Biochemical Basis of Abiotic Stress Tolerance in Native Isolates of Beauveria bassiana (Balsamo) Vuillemin from Kerala
DOI:
https://doi.org/10.55446/IJE.2023.1288Keywords:
Entomopathogenic fungi, Beauveria bassiana native isolates, stress tolerance, biochemical parameters, trehalose, enzymes, catalase, peroxidase, protein profiling, heat shock proteinAbstract
A study on the screening of Beauveria bassiana (Balsamo) Vuillemin native isolates for abiotic stress tolerance was carried out at the Department of Agricultural Entomology, College of Agriculture, Vellanikkara, Thrissur, Kerala during 2019-2023. The growth and biochemical parameters of the three native isolates of B. bassiana (BTL1: OP271760, BTL2: OP290199 and PKDE: OP292066) were studied under different abiotic stress conditions viz., temperature, water stress, acidity and salinity. The results revealed that the highest temperature tolerance (40° C) was displayed by the B. bassiana isolate PKDE. It also survived at high water stress (45% polyethylene glycol), acidic (pH2) and saline (1.5 M) conditions. The analysis of biochemical parameters in stress tolerant isolate revealed that the greatest levels of trehalose (2.033± 0.025, 2.043± 0.006 mg/ min/ g of mycelia), catalase (0.0072± 0.007, 0.0032± 0.003 EU/ min/ mg protein) and peroxidase (0.0602± 0.005, 0.0175± 0.017 EU/ min/ mg tissue weight) were observed after exposure to high temperature and water stress, respectively. This shows that exposure to abioticstress and biochemical parameters are closely related and can be used as determinants for evaluating the potential of biocontrol agents.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
References
Alali S, Mereghetti V, Faoro F, Bocchi S, Al Azmeh F, Montagna M. 2019. Thermotolerant isolates of Beauveria bassiana as a potential control agent of insect pests in subtropical climates. PloS one 14(2): 211457. DOI: https://doi.org/10.1371/journal.pone.0211457
Angelova M B, Pashova S B, Spasova B K, Vassilev S V, Slokoska L S. 2005. Oxidative stress response of filamentous fungi induced by hydrogen peroxide and paraquat. Mycological Research 109: 150-158. DOI: https://doi.org/10.1017/S0953756204001352
Booth S R, Drummond F A, Groden E. 2000. Small fruits. Lacey, L A, Kaya, H K (eds.), Field manual of techniques in invertebrate pathology. Kluwer Academic Publishers, Dordrecht. pp. 597-615. DOI: https://doi.org/10.1007/978-94-017-1547-8_26
Borehamand D R, Mitchel R E J. 1994. Regulation of heat and radiation stress responses in yeast by hsp-104 Radiation Research 137(2): 90-195. DOI: https://doi.org/10.2307/3578811
Chakravarty D, Bihani S C, Banerjee M, Kalwani P, Ballal A. 2022. Unique functional insights into the antioxidant response of the cyanobacterial Mn-catalase (KatB). Free Radical Biology and Medicine 179: 266-276. DOI: https://doi.org/10.1016/j.freeradbiomed.2021.11.016
Chantasingh D, Kitikhun S, Keyhani N O, Boonyapakron K, Thoetkiattikul H, Pootanakit K, Eurwilaichitr L. 2013. Identification of catalase as an early up-regulated gene in Beauveria bassiana and its role in entomopathogenic fungal virulence. Biological Control 67(2): 85-93. DOI: https://doi.org/10.1016/j.biocontrol.2013.08.004
Devi K U, Sridevi V, Mohan C M, Padmavathi J. 2005. Effect of high temperature and water stress on in vitro germination and growth in isolates of the entomopathogenic fungus Beauveria bassiana (Bals.) Vuillemin. Journal of Invertebrate Pathology 88(3): 181-189. DOI: https://doi.org/10.1016/j.jip.2005.02.001
Fargues J, Goettel M S, Smits N, Ouedraogo A, Rougier M. 1997. Effect of temperature on vegetative growth of Beauveria bassiana isolates from different origins. Mycologia 89: 383-392. DOI: https://doi.org/10.1080/00275514.1997.12026797
Fătu A C, Lumînare C M, Cojanu D N, Dinu M M, Andrei A M. 2021. In Vitro thermal requirements of some Beauveria sp. isolates under constant conditions. Journal of Advances in Agriculture 12: 70-76. DOI: https://doi.org/10.24297/jaa.v12i.9130
Fillinger S, Chaveroche M K, Van Dijck P, de Vries R, Ruijter G, Thevelein J, d’Enfert C. 2001. Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology 147(7): 1851-1862. DOI: https://doi.org/10.1099/00221287-147-7-1851
Galani G. 1988. Cultivation of some entomopathogenic fungi in liquid media with various initial pH values. Analel-Institutului-de-Cercetari- pentru-Protecta-Plantelor 21: 54.
Goettel M S, Inglis G D, Wraight S P. 2000. Fungi. In: Lacey, L A, Kaya, H K (eds.), Field manual of techniques in invertebrate pathology. Kluwer Academic Publishers, Dordrecht, pp. 255-282. DOI: https://doi.org/10.1007/978-94-017-1547-8_10
Hallsworth J E, Magan N. 1996. Culture age, temperature, and pH affect the polyol and trehalose contents of fungal propagules.Applied and Environmental Microbiology 62(7): 2435-2442. DOI: https://doi.org/10.1128/aem.62.7.2435-2442.1996
Hallsworth J E, Magan N. 1994. Effect of carbohydrate type and concentration on polyhydroxy alcohol and trehalose content of conidia of three entomopathogenic fungi. Microbiology 140(10): 2705-2713. DOI: https://doi.org/10.1099/00221287-140-10-2705
Hiromori H, Yaginuma D, Kajino K, Hatsukade M. 2004. The effects of temperature on the insecticidal activity of Beauveria amorpha to Heptophylla picea. Applied Entomology and Zoology 39: 389-392. DOI: https://doi.org/10.1303/aez.2004.389
Hirt R P, Healy B, Vossbrinck C R, Canning E U, Embley T M. 1997. Amitochondrial Hsp70 orthologue in Vairimorpha necatrix: molecular evidence that microsporidia once contained mitochondria. Current Biology 7(12): 995-998. DOI: https://doi.org/10.1016/S0960-9822(06)00420-9
Hossen S, Sukhan Z P, Kim S C, Hanif M A, Kong I K, Kho K H. 2023. Molecular Cloning and functional characterization of catalase in stress physiology, innate immunity, testicular development, metamorphosis, and cryopreserved sperm of pacific abalone. Antioxidants 12(1): 109. DOI: https://doi.org/10.3390/antiox12010109
Hottiger T, de Virgilio C, Hall M N, Boller T, Wiemken A. 1994. The role of trehalose synthesis for the acquisition of thermotolerance in yeast: II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro. European Journal of Biochemistry 219: 187-193. DOI: https://doi.org/10.1111/j.1432-1033.1994.tb19929.x
Jaya N, Garcia V, Vierling E. 2009. Substrate binding site flexibility of the small heat shock protein molecular chaperones. Proc Natl Acad Sci U S A 106(37): 15604-15609. DOI: https://doi.org/10.1073/pnas.0902177106
Karvembu P, Gomathi V, Anandham R, Mary J K. 2021. Isolation, screening and identification of moisture stress tolerant Rhizobacteria from xerophyte Prosopis juliflora (SW). Journal of Pharmacogn Phytochemistry 9: 605-609. DOI: https://doi.org/10.22271/phyto.2020.v9.i6i.12981
Keller F, Schellenberg M, Wiemken A. 1982. Localization of trehalase in vacuoles and of trehalose in the cytosol of yeast (Saccharomyces cerevisiae). Archives of microbiology 131: 298-301. DOI: https://doi.org/10.1007/BF00411175
Laemmli U K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. DOI: https://doi.org/10.1038/227680a0
Larsen H. 1986. Halophilic and halotolerant microorganisms - an overview and historical perspective. FEMS Microbiology Reviews 39: 3-7. DOI: https://doi.org/10.1111/j.1574-6968.1986.tb01835.x
Li G, Fan A, Peng G, Keyhani N O, Xin J, Cao Y, Xia Y. 2017. A bifunctional catalase-peroxidase, MakatG1, contributes to the virulence of Metarhizium acridum by overcoming oxidative stress on the host insect cuticle. Environmental Microbiology 19(10): 4365-4378. DOI: https://doi.org/10.1111/1462-2920.13932
Li Z, Li C, Huang B, Fan M. 2001. Discovery and demonstration of the teleomorph of Beauveria bassiana (Bals.) Vuill., an important entomogenous fungus. Chinese Science Bulletin (46): 751-753. DOI: https://doi.org/10.1007/BF03187215
Lowry O H, Rosebrough N J, Farr A L, Randall R J. 1951. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry (193): 265-275. DOI: https://doi.org/10.1016/S0021-9258(19)52451-6
Magan N, Wicklow D T, Soderstrom B. 1997. The Mycota, environmental and microbial relationships Springer publishers, India. pp. 99-113.
Mahadevan A, Sridhar R. 1986. Methods in physiological plant pathology (3rd ed.). Sivakami Publications, Chennai. pp. 183-184.
Mascarin G M, Kobori N N, Coleman J J, Jackson M A. 2023. Impact of osmotic stress on production, morphology, and fitness of Beauveria bassiana blastospores. Applied Microbiology and Biotechnology. pp. 1-17. DOI: https://doi.org/10.1007/s00253-023-12631-z
Matewele P, Trinci A P J, Gillespie A T. 1994. Mutants of entomopathogenic fungi that germinate and grow at reduced water activity and reduced relative humidities are more virulent to Nephotettix virescens (green leafhopper) than the parental strains. Mycological Research 98: 1329-1333. DOI: https://doi.org/10.1016/S0953-7562(09)80306-7
Mayer F L, Wilson D, Jacobsen I D. 2012. Small but crucial: the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans. PLoS One 7(6): 38584 DOI: https://doi.org/10.1371/journal.pone.0038584
McGuire A V, Northfield T D. 2020. Tropical occurrence and agricultural importance of Beauveria bassiana and Metarhizium anisopliae. Frontiers in Sustainable Food Systems 4: 6-10. DOI: https://doi.org/10.3389/fsufs.2020.00006
Michan S, Lledias F, Hansberg, W. 2003. A sexual development is increased in Neurospora crassa cat-3-null mutant strains. Eukaryotic Cell (2): 798-80. DOI: https://doi.org/10.1128/EC.2.4.798-808.2003
Ocón A, Hampp R, Requena N. 2007. Trehalose turnover during abiotic stress in arbuscular mycorrhizal fungi. New Phytologist 174(4): 879-891. DOI: https://doi.org/10.1111/j.1469-8137.2007.02048.x
Palem P C P, Padmaja V. 2014. Changes in protein profiles of Beauveria species under in vitro abiotic stress. International Journal of Plant, Animal and Environmental Sciences 4(3): 68-76.
Parker B L, Skinner M L, Costa S D, Gouli S, Reid W, Bouhssini M. 2003. Entomopathogenic fungi of Eurygaster integriceps Puton (Hemiptera: Scutelleridae): collection and characterization for development. Biological Control 27: 260-272. DOI: https://doi.org/10.1016/S1049-9644(03)00017-3
Rangel D E N, Anderson A J, Roberts D W. 2008. Evaluating physical and nutritional stress during mycelial growth as inducers of tolerance to heat and UV-B radiation in Metarhizium anisopliae conidia. Mycological Research 112: 1362-1372. DOI: https://doi.org/10.1016/j.mycres.2008.04.013
Sadasivam S, Manickam A. 2008. Biochemical Methods for Agricultural Sciences, 6th Edn. New Age International (P) Ltd, New Delhi. pp. 107-108.
Sanzhimitupova R D. 1980. Effect of the pH of the medium on the growth and development of the causal agent of mycosis of the seabuckthorn moth (Gelecjia hippophaellaSchrk.). Izvestiya-Sibirskogo-Otdeleniya-Akademii-Nauk-SSSR-Biology 15: 39-41.
Seymour I J, Piper P W. 1999. Stress induction of HSP30, the plasma membrane heat shock protein gene of Saccharomyces cerevisiae, appears not to use known stress-regulated transcription factors. Microbiology 145: 231-239. DOI: https://doi.org/10.1099/13500872-145-1-231
Shah F A, Wang C S, Butt T M. 2005. Nutrition influences growth and virulence of the insect-pathogenic fungus Metarhizium anisopliae. FEMS Microbiology Letters 251: 259-266. DOI: https://doi.org/10.1016/j.femsle.2005.08.010
Shimazu M, Sato H. 1996. Media for selective isolation of an entomogenous fungus Beauveria bassiana Deuteromycotina, Hyphomycetes. Applied Entomology and Zoology 31: 291-298. DOI: https://doi.org/10.1303/aez.31.291
Tereshina V M. 2005. Thermotolerance in fungi: the role of heat shock proteins and trehalose. Microbiology 74(3): 247-257. DOI: https://doi.org/10.1007/s11021-005-0059-y
Tiwari S, Thakur R, Shankar J. 2015. Role of heat-shock proteins in cellular function and in the biology of fungi. Biotechnology Research International 2015: 132635. DOI: https://doi.org/10.1155/2015/132635
ul Haq S, Khan A, Ali M, Khattak A M, Gai W X, Zhang H X, Wei A M, Gong Z H. 2019. Heat shock proteins: dynamic biomolecules to counter plant biotic and abiotic stresses. International Journal of Molecular Sciences 20(21): 5321. DOI: https://doi.org/10.3390/ijms20215321
Vidal C, Fargues J, Ekesi S, Maniania N K. 2007.Use of entomopathogenic fungi in biological pest management: Climatic constraints for fungal bioinsecticides, Research Signpost, Trivandrum. pp. 39-55.
Vierstraete E, Verleyen P, Sas F, Van den Bergh G, De Loof A, Arckens L Schoofs L. 2004. The instantly released Drosophila immune proteome is infection-specific. Biochemical and biophysical research communications. 317(4): 1052-1060. DOI: https://doi.org/10.1016/j.bbrc.2004.03.150
Wang J, Chen J, Hu Y, Ying S H, Feng M G. 2020. Roles of six Hsp70 genes in virulence, cell wall integrity, antioxidant activity and multiple stress tolerance of Beauveria bassiana. Fungal Genetics and Biology 144: 103437. DOI: https://doi.org/10.1016/j.fgb.2020.103437
Wang X, Zhang Y, Wang C, Wang C, Hou L. 2013. Intracellular level of trehalose in soy sauce yeasts under different stresses. International Conference on Agricultural and Natural Resources Engineering 5: 321-326. DOI: https://doi.org/10.1016/j.ieri.2013.11.110
Welker S, Rudolph B, Frenzel E, Hagn F, Liebisch G, Schmitz G, Scheuring J, Kerth A, Blume A, Weinkauf S, Haslbeck M. 2010. Hsp12 is an intrinsically unstructured stress protein that folds upon membrane association and modulates membrane function. Molecular Cell 39(4): 507-520. DOI: https://doi.org/10.1016/j.molcel.2010.08.001
Yan Z Y, Zhao M R, Huang C Y, Zhang L J, Zhang, J. X. 2021. Trehalose alleviates high temperature stress in Pleurotus ostreatus by affecting central carbon metabolism. Microbial Cell Factories 20(1): 1-11. DOI: https://doi.org/10.1186/s12934-021-01572-9
Yancey P H, Clark M E, Hand S C, Bowlus R D, Somero G N .1982. Living with water stress : Evolution of osmolyte systems. Science 217: 1214-1222. DOI: https://doi.org/10.1126/science.7112124
Yuan W, Ágoston R, Lee D. 2012. Influence of lactate and acetate salt adaptation on Salmonella typhimurium acid and heat resistance. Food Microbiology 30: 448-452. DOI: https://doi.org/10.1016/j.fm.2011.12.023
Zhang C, Wang W, Lu R, Jin S, Chen Y, Fan M, Huang B, Li Z, Hu F. 2016. Metabolic responses of Beauveria bassiana to hydrogen peroxide-induced oxidative stress using an LC-MS-based metabolomics approach.Journal of Invertebrate Pathology 137: 1-9. DOI: https://doi.org/10.1016/j.jip.2016.04.005
Zhao X, Yin K, Feng R, Miao R, Lin J, Cao L, Ni Y, Li W, Zhang Q. 2023. Genome-Wide Identification and Analysis of the Heat-Shock Protein Gene in L. edodes and Expression Pattern Analysis under Heat Shock. Current Issues in Molecular Biology 45(1): 614-627. DOI: https://doi.org/10.3390/cimb45010041