Compatibility of Entomopathogenic Fungus Metarhizium rileyi with Biorationals

Authors

  • Kajal Bharti Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, Punjab
  • Neelam Joshi Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, Punjab
  • Saijal Khosla Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, Punjab
  • Rabinder Kaur Department of Entomology, Punjab Agricultural University, Ludhiana 141004, Punjab

DOI:

https://doi.org/10.55446/IJE.2022.801

Keywords:

Metarhizium rileyi, M. anisopliae, Beauveria bassiana, Verticillium lecanii, azadirachtin, spinetoram, compatibility, reduction in growth, IPM

Abstract

In this study, Metarhizium rileyi isolates (M. rileyi NIPHM, M. rileyi MTCC 4254 and M. rileyi MTCC 10395) were evaluated for their compatibility with other entomopathogenic fungi viz. Metarhizium anisopliae NBAIR (Ma-35), commercial formulation of M. anisopliae, M. anisopliae (Local), Beauveria bassiana ITCC 7126, B. bassiana (Local) and commercial formulation of Verticillium lecanii and neem based formulations- (azadirachtin 0.03%EC) and (azadirachtin 0.15%EC) along with synthetic insecticide spinetoram 11.7%SC. Neem-based formulations viz., azadirachtin 0.03% EC 1.5 ml/ l and 0.15%EC 5 ml/ l reduced M. rileyi MTCC 4254 growth by 44.77% and 53.73% over control, respectively; M. rileyi MTCC 4254 was more compatible with M. anisopliae NBAIR (Ma-35) and commercial formulation of M. anisopliae with less reduction in growth (24.3% and 24.9%, respectively); but it was least compatible with commercial formulation of V. lecanii. M. rileyi MTCC 4254 recorded 71.64% reduction with spinetoram 11.7% SC (0.4 ml/ l). Thus, M. rileyi was compatible with M. anisopliae NBAIR (Ma-35), M. anisopliae followed by azadirachtin 0.03% EC, and these could be used as components in IPM.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2022-10-29

How to Cite

Bharti, K., Joshi, N., Khosla, S., & Kaur, R. (2022). Compatibility of Entomopathogenic Fungus <i>Metarhizium rileyi</i> with Biorationals. Indian Journal of Entomology, 85(1), 225–228. https://doi.org/10.55446/IJE.2022.801

Issue

Section

Research Communications

References

Constanza M M, Huarte-Bonnet C, Davyt-Colo B, Pedrini N. 2019. Is the insect cuticle the only entry gate for fungal infection? Insights into alternative modes of action of entomopathogenic fungi. Journal of Fungi 5(2): 33.

Dev B, Verma S C, Sharma P L, Chandel R S, Gaikwad M B, Banshtu T, Sharma P. 2021. Evaluation of Metarhizium rileyi Farlow (Samson) impregnated with azadirachtin and indoxacarb against Helicoverpa armigera (Hubner). Egyptian Journal of Biological Pest Control 31: 142.

Grewal G K, Joshi N. 2021. Evaluation of adjuvants on growth and virulence of Metarhizium rileyi against Spodoptera litura (F.). Indian Journal of Entomology 81(3): 597-602.

Hirose E, Neves O J, Zequi A C, Martins L H, Peralta C H, Junior A M. 2001. Effect of biofertilizers and neem oil on the entomopathogenic fungi Beauveria bassiana (Bals.) and Metarhizium anisopliae (Metsch.) Sorok. Brazilian Archives of Biology and Technology 44(4): 419-423.

Isman M B. 2006. Botanical insecticides, deterrents and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology 51(1): 45-66.

Kepler R M, Humber R A, Bischoff J F, Rehner S A. 2014. Clarification of generic and species boundaries for Metarhizium and related fungi through multigene phylogenetics. Mycologia 106(4): 811-829.

Matcha N, Duraimurugan P, Bhowmick A K. 2021. Effect of insecticides and fungicides on growth and sporulation of Metarhizium rileyi (Farlow) Samson. Journal of Pharmaceutical Innovation 10(7): 1444-1447.

Mohan M C, Reddy N P, Devi U K, Kongara R, Sharma H C. 2007. Growth and insect assays of Beauveria bassiana with neem to test their compatibility and synergism. Biocontrol Science and Technology 17(10): 1059-1069.

Neves P M O J, Hirose E, Tchujo P T. 2001. Compatibility of entomopathogenic fungi with neonicotinoid insecticides. Neotropical Entomology 30: 263-268.

Rashid M, Baghdadi A, Sheikhi A, Pourian H R, Gazavi M. 2010. Compatibility of Metarhizium anisopliae (Ascomycota: Hypocreales) with several insecticides. Journal of Plant Protection Research 50: 22-27.

Reddy N H S, Sivakumar T and Balabaskar P. 2021. Bio-Control Efficiency of Trichoderma viride against Stem Rot of Tuberose Caused by Sclerotium rolfsii. International Journal of Current Microbiology and Applied Sciences 10(11): 407-415.

Sahayaraj K, Namasivayam S K R, Rathi J M. 2011. Compatibility of entomopathogenic fungi with extracts of plants and commercial botanicals. African Journal of Biotechnology 10(6): 933-938.

Saheb Y P, Manjula K, Nischala A, Devaki K, Lakshmi R S J, Reddy B R, Venkateswarlu N C. 2021. Compatibility of Metarhizium (Nomuraea) rileyi rice bran oil formulation with insecticides. The Pharma Innovation Journal 10(6): 1312-1314.

Sumalatha J, Rahman S J, Rahman S M A S, Prasad R D. 2017. Compatibility of entomopathogenic fungi Verticillium lecanii with other bio pesticides in laboratory conditions. The Pharma Innovation 6(9): 264-266.

Togbé C E, Zannou E, Gbèhounou G, Kossou D, Huis A V. 2014. Field evaluation of the synergistic effects of neem oil with Beauveria bassiana (Hypocreales: Clavicipitaceae) and Bacillus thuringiensis var. kurstaki (Bacillales: Bacillaceae). International Journal of Tropical Insect Science 34(4): 248-259.

Usha J, Babu M N, Padmaja V. 2014. Detection of compatibility of entomopathogenic fungus Beauveria bassiana (bals.) Vuill. With pesticides, fungicides and botanicals. International Journal of Plant, Animal and Environmental Sciences 4(2): 613-624.