Toxicity of Bacillus thuringiensis Isolates to the Cucurbit Fruit Fly Zeugodacus cucurbitae

Authors

  • T Sharmitha Department of Agricultural Entomology, Tamil Nadu Agricultural University (TNAU), Coimbatore 641003, Tamil Nadu
  • V Balasubramani Department of Agricultural Entomology, Tamil Nadu Agricultural University (TNAU), Coimbatore 641003, Tamil Nadu
  • T Elaiyabharathi Department of Medicinal and Aromatic Crops, Tamil Nadu Agricultural University (TNAU), Coimbatore 641003, Tamil Nadu
  • M Raveendran Department of Plant Biotechnology, Tamil Nadu Agricultural University (TNAU), Coimbatore 641003, Tamil Nadu
  • L Pugalendhi Department of Vegetable Science, Tamil Nadu Agricultural University (TNAU), Coimbatore 641003, Tamil Nadu
  • G Rajadurai Department of Plant Biotechnology, Tamil Nadu Agricultural University (TNAU), Coimbatore 641003, Tamil Nadu

DOI:

https://doi.org/10.55446/IJE.2024.2469

Keywords:

Bt cultures, colony features, crystal shape, PCR, cry gene, cyt gene, SDS PAGE, insecticidal proteins, concentration-response, bioassay, whole diet contamination, LC50, LC95

Abstract

The management of melon fly Zeugodacus cucurbitae (Coquilett) having wide host range is most challenging. Bacillus thuringiensis remains a potential pest management candidate of biological origin. In the present study, nine indigenous Bt isolates were characterised and evaluated against neonate (~12 hrs old) maggots. The isolates showed a diversified nature of colony and crystal morphology. Concentration-response toxicity assay revealed that three isolates viz., T166, T60 and T184 were highly toxic with LC50 values of 0.38, 0.41 and 0.40 µg/ µl, respectively on par with the reference strain Bti 4Q2 with 0.37 µg/ µl. LC95 of Bt cultures ranged from 1.15 to 2.09 µg/ µl. Gene profiling revealed the occurrence of cry4Aa in T166 and T184, cry4Ba in T60, cry11Aa in T166 and cyt1 in T166 with protein profiling showing proteins of ~134, ~128, ~72 and ~27kDa, respectively.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-08-29

How to Cite

Sharmitha, T., Balasubramani, V., Elaiyabharathi, T., Raveendran, M., Pugalendhi, L., & Rajadurai, G. (2024). Toxicity of <i>Bacillus thuringiensis</i> Isolates to the Cucurbit Fruit Fly <i>Zeugodacus cucurbitae</i>. Indian Journal of Entomology, 1–4. https://doi.org/10.55446/IJE.2024.2469

Issue

Section

Research Communications

References

Aarthi N, Shylesha A N, Dubey V K, Aditya K, Kandan A, Rangeshwaran R, Manjunatha C. 2024. Screening of indigenous Bacillus thuringiensis for dipteran active cry gene profiles and potential toxicity against melon fruit fly, Zeugodacus cucurbitae (Coquillett). Egyptian Journal of Biological Pest Control 34(1): 45.

Abbott W S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18(2): 265-267.

Bari Md A, Shishir Md A, Khan S A, Khan S N, Hoq Md M. 2021. Bio-efficacy of indigenous Bacillus thuringiensis JSd1 against melon fly, Zeugodacus cucurbitae (Coq.) (Diptera: Tephritidae: Dacinae). International Journal of Entomology Research 6(2): 127-134.

Das S, Chatterjee A, Pal T K. 2020. Organic farming in India: a vision towards a healthy nation. Food Quality and Safety 4(2): 69-76.

Dias N P, Montoya P, Nava D E. 2022. A 30‐year systematic review reveals success in tephritid fruit fly biological control research. Entomologia experimentalis et Applicata 170(5): 370-384.

Diksha Mahajan E, Singh S, Sohal S K. 2022. Potential biological control agents of Zeugodacus cucurbitae (Coquillett): A review.Journal of Applied Entomology 146(8): 917-929.

Dorjay N, Abrol D P. 2022. Insect pollination in cucurbit crops. Journal of Palynology 58: 63-77.

Ganga G C, Arjyal C. 2020. Field Evaluation of Native B. thuringiensis isolates against aphids (Aphis fabae). Tribhuvan University Journal of Microbiology 7: 115-122.

Haider J, Rai A B. 2021. Emergence of new insect pests on vegetables during the last decade: a case study. Current Horticulture 9(1): 20-26.

He F. 2011. Bradford protein assay. Bio Protocol 1(6): 1-2. http://www.bio-protocol.org/e45

Jain D, Sunda S D, Sanadhya S, Nath D J, Khandelwal S K. 2017. Molecular characterization and PCR-based screening of cry genes from Bacillus thuringiensis strains. 3 Biotech 7: 1-8.

Kalman S, Kiehne K L, Libs J L, Yamamoto T. 1993. Cloning of a novel cryIC-type gene from a strain of Bacillus thuringiensis subsp. galleriae. Applied and Environmental Microbiology 59(4): 1131-1137.

Laemmli U K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259): 680-685.

Nagaraju, M C, Mohan M, Bindushree C, Balaji B N, Venugopal U, Venkatesan T. 2023. Isolation and characterization of native isolates of Bacillus thuringiensis (Berliner)strains from different ecological habitat in India. Journal of Experimental Zoology India 26(2).

Ramalakshmi A, Udayasuriyan V. 2010. Diversity of Bacillus thuringiensis isolated from western ghats of Tamil Nadu state, India. Current Microbiology 61(1): 13-18.

Salama H S, Abd El-Ghany N M, Saker M M. 2015. Diversity of Bacillus thuringiensis isolates from Egyptian soils as shown by molecular characterization. Journal of Genetic Engineering and Biotechnology 13: 101-109.

Sapkota R, Dahal K C, Thapa R B. 2010. Damage assessment and management of cucurbit fruit flies in spring-summer squash.Journal of Entomology and Nematology 2(1): 7-12.

Seshadri V S, More T A. 2009. Cucurbit vegetables: biology, production and utilization. New Delhi Studium Press Pvt. Ltd., India, 500 pp.

Sharif F A, Alaeddinoglu N G. 1988. A rapid and simple method for staining of the crystal protein of Bacillus thuringiensis. Journal of Industrial Microbiology and Biotechnology 3(4): 227-229.

Sharmitha T, Balasubramani V, Elaiyabharathi T, M. Raveendran, L. Pugalendhi and E. Kokiladevi. 2024. Molecular characterisation and toxicity analysis of indigenous Bacillus thuringiensis Berliner isolates against cucurbit fruit fly maggots, Zeugodacus cucurbitae (Coquilett)(Diptera: Tephritidae). Agricultural Science Digest.

Shishir M A, Akter A, Bodiuzzaman M, Hossain M A, Alam M M, Khan S A, Khan S N, Hoq M M. 2015. Novel toxicity of Bacillus thuringiensis strains against the melon fruit fly, Bactrocera cucurbitae (Diptera: Tephritidae). Biocontrol Science 20(2): 115-123.

Sivaji M, Girija D. 2017. Evaluation of bio-insecticidal property of Bacillus thuringiensis strains isolated from Western Ghats soil. Microbiology Research Journal International 21(2): 1-12.

Sridhara P B, Dharmashekara C, Srinivasa C, Shivamallu C, Kollur S P, Gopinath S M, Syed A, Patil S S, Prasad A, Salamun D E. 2021. Isolation, characterization, and optimization of proteaseproducing bacterium Bacillus thuringiensis from paddy field soil. Pharmacognosy Research 13(2): 89-95.

Srinivasan M R, Kuttalam S, Chandrasekaran S, Kennedy J S. 2017. Probit analysis: Electronic Manual on Pesticides and Environment eds. Calculate LC50 or LD50 with MS Excel worksheet based on Finney's method of probit analysis. Tamil Nadu Agricultural University, Coimbatore.

Valtierra-de-Luis D, Villanueva M, Berry C, Caballero P. 2020. Potential for Bacillus thuringiensis and other bacterial toxins as biological control agents to combat dipteran pests of medical and agronomic importance. Toxins 12(12): 773.

Willer, Helga Jan Travnicek, Schlatter B. 2024. The World of organic agriculture. Statistics and emerging trends 2024. Research Institute of Organic Agriculture FiBL, Frick, and IFOAM – Organics International, Bonn. 352 pp. http://www.organic-world.net/yearbook/yearbook-2024.html