De Novo Genome Assembly of the Main Malaria Vector Anopheles baimaii

Authors

  • Sedthapong Laojun Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram, Thailand 750008
  • Pongmada Damapong Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram, Thailand 750008
  • Peerada Damapong Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram
  • Tanawat Chaiphongpachara Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram, Thailand 750008

DOI:

https://doi.org/10.55446/IJE.2024.2371

Keywords:

Anopheles baimaii, Thailand, genome assembly, malaria vector, malaria, mosquito-borne disease, k-mer, blast, mapping depth, BUSCO analysis

Abstract

Anopheles baimaii, a primary vector of human malaria in Southeast Asia's forested regions, including Thailand, plays a pivotal role in pathogen transmission. The lack of a reference genome for An. baimaii limits our comprehensive understanding of its biology. This study presents the first genome assembly for An. baimaii, consisting of 1,098,224 contigs and exhibiting a GC content of 46.4%. k-mer analysis estimates the genome size at 443 megabases (Mb), a finding corroborated by BLAST results that align the lengths of the top five contigs with those of other Anopheles spp., as verified by comparison with genomes in the NCBI NT database. Validation of the assembly through Illumina read mapping achieved a 94.78% mapping rate but revealed a low average mapping depth of 47.44. Furthermore, BUSCO analysis indicated a low degree of completeness, with only 23.92% of BUSCOs completed. Despite these challenges, this draft genome assembly provides a crucial reference for An. baimaii and lays the groundwork for future molecular biology research and malaria control strategies.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-10-08

How to Cite

Laojun, S., Damapong, P., Damapong, P., & Chaiphongpachara, T. (2024). De Novo Genome Assembly of the Main Malaria Vector <i>Anopheles baimaii</i>. Indian Journal of Entomology. https://doi.org/10.55446/IJE.2024.2371

Issue

Section

Research Articles

References

Alhakami H, Mirebrahim H, Lonardi S. 2017. A comparative evaluation of genome assembly reconciliation tools. Genome Biology 18: 93.

Arensburger P, Megy K, Waterhouse RM et al. 2010. Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics. Science 330: 86-88.

Bolger A M, Lohse M, Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114-2120.

Catapano PL, Falcinelli M, Damiani C, Cappelli A, Koukouli D, Rossi P, Ricci I, Napolioni V, Favia G. 2023. De novo genome assembly of the invasive mosquito species Aedes japonicus and Aedes koreicus. Parasites and Vectors 16: 427.238

Chaiphongpachara T, Changbunjong T, Laojun S, Nutepsu T, Suwandittakul N, Kuntawong K, Sumruayphol S, Ruangsittichai J. 2022a. Mitochondrial DNA barcoding of mosquito species (Diptera: Culicidae) in Thailand. PLoS One 17: e0275090.

Chaiphongpachara T, Changbunjong T, Sumruayphol S, Laojun S, Suwandittakul N, Kuntawong K. 2022b. Geometric morphometrics versus DNA barcoding for the identification of malaria vectors Anopheles dirus and An. baimaii in the Thai ‑ Cambodia border. Scientific Reports 12: 13236.

Chaiphongpachara T, Laojun S, Changbunjong T, Sumruayphol S, Suwandittakul N, Chookaew S, Atta Y. 2022c. Genetic diversity, haplotype relationships, and kdr mutation of malaria Anopheles vectors in the most Plasmodium knowlesi-endemic area of Thailand. Tropical Medicine and Infectious Disease 7: 412.

Chakraborty M, Baldwin-Brown JG, Long A D, Emerson J J. 2016. Contiguous and accurate de novo assembly of metazoan genomes with modest long read coverage. Nucleic Acids Research 44: e147.

Chakraborty M, Ramaiah A, Adolfi A et al. 2020. Hidden features of the malaria vector mosquito, Anopheles stephensi, revealed by a high-quality reference genome. bioRxiv 113019.

Dida F, Yi G. 2021. Empirical evaluation of methods for de novo genome assembly. PeerJ Computer Science 7: e636.253

Ellis EA, Storer CG, Kawahara AY. 2021. De novo genome assemblies of butterflies. Gigascience 10: giab041.

Hii J, Rueda LM. 2013. Malaria vectors in the greater Mekong subregion: Overview of malaria vectors and remaining challenges. Southeast Asian Journal of Tropical Medicine and Public Health 44: 73-165

Holt RA, Mani Subramanian G, Halpern A et al. 2002. The genome sequence of the malaria mosquito Anopheles gambiae. Science 298: 129-149.

Jiang X, Peery A, Hall AB et al. 2014. Genome analysis of a major urban malaria vector mosquito, Anopheles stephensi. Genome Biology 15: 459.

Kaddumukasa MA, Wright J, Muleba M, Stevenson JC, Norris DE, Coetzee M. 2020. Genetic differentiation and population structure of Anopheles funestus from Uganda and the southern African countries of Malawi, Mozambique, Zambia and Zimbabwe. Parasites & Vectors 13: 87.

Lau Y L, Lee W C, Chen J, Zhong Z, Jian J, Amir A, Cheong F W, Sum J S, Fong M Y. 2016. Draft genomes of Anopheles cracens and Anopheles maculatus: Comparison of simian malaria and human malaria vectors in peninsular Malaysia. PLoS One 11: e0157893.

Lischer HEL, Shimizu KK. 2017. Reference-guided de novo assembly approach improves genome reconstruction for related species. BMC Bioinformatics 18: 474.

Lucas ER, Nagi SC, Egyir-Yawson A et al. 2023. Genome-wide association studies reveal novel loci associated with pyrethroid and organophosphate resistance in Anopheles gambiae and Anopheles coluzzii. Nature Communications 14: 4946.

Luo R, Liu B, Xie Y et al. 2012. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. Gigascience 1: 18.

Manni M, Berkeley MR, Seppey M, Zdobnov EM. 2021. BUSCO: Assessing genomic data quality and beyond. Current Protocols 1:e323.

Mwagira-Maina S, Runo S, Wachira L et al. 2021. Genetic markers associated with insecticide

resistance and resting behaviour in Anopheles gambiae mosquitoes in selected sites in Kenya. Malaria journal 20: 461.

Nene V, Wortman J R, Lawson D et al. 2007. Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316: 1718-1723.

O’Loughlin S M, Okabayashi T, Honda M, Kitazoe Y, Kishino H, Somboon P, Sochantha T, Nambanya S, Saikia P K, Dev V, Walton C. 2008. Complex population history of two Anopheles dirus mosquito species in Southeast Asia suggests the influence of Pleistocene climate change rather than human-mediated effects. Journal of Evolutionary Biology 21: 1555-569.

Obsomer V, Defourny P, Coosemans M. 2007. The Anopheles dirus complex: Spatial distribution and environmental drivers. Malaria Journal 6: 26.

Parker D M, Carrara V I, Pukrittayakamee S, McGready R, Nosten F H. 2015. Malaria ecology along the Thailand-Myanmar border. Malaria Journal 14: 388.

Rattanarithikul R, Harrison B A, Harbach R E, Panthusiri P, Coleman R E. 2006. Illustrated keys to the mosquitoes of Thailand IV. Anopheles. Southeast Asian Journal of Tropical Medicine and Public Health 37: 1-128.

Saeung M, Pengon J, Pethrak C, Thaiudomsap S, Lhaosudto S, Saeung A, Manguin S, Chareonviriyaphap T, Jupatanakul N. 2023. Dirus Complex species identification PCR (DiCSIP) improves identification of Anopheles dirus complex from Greater Mekong. bioRxiv 561471.

Sarma DK, Prakash A, O’Loughlin SM et al. 2012. Genetic population structure of the malaria vector Anopheles baimaii in north-east India using mitochondrial DNA. Malaria journal 11: 76.

Satam H, Joshi K, Mangrolia U et al. 2023. Next-generation sequencing technology: Current trends and advancements. Biology (Basel) 12: 997.

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31: 3210-3212.

Sumitha M K, Kalimuthu M, Kumar M S et al. 2023. Genetic differentiation among Aedes aegypti populations from different eco-geographical zones of India. PLOS Neglected Tropical Diseases 17: e0011486.304

Suwonkerd W, Ritthison W, Ngo CT, Tainchum K, Bangs M J, Chareonviriyaphap T. 2013. Vector biology and malaria transmission in Southeast Asia. Anopheles mosquitoes - new insights into malaria vectors.

Tananchai C, Tisgratog R, Juntarajumnong W, Grieco JP, Manguin S, Prabaripai A, Chareonviriyaphap T. 2012. Species diversity and biting activity of Anopheles dirus and Anopheles baimaii (Diptera: Culicidae) in a malaria prone area of western Thailand. Parasites and Vectors 5: 211.

Vurture G W, Sedlazeck F J, Nattestad M, Underwood C J, Fang H, Gurtowski J, Schatz M C. 2017.

GenomeScope: Fast reference-free genome profiling from short reads. Bioinformatics 33: 2202-2204.

Walton C, Handley J M, Kuvangkadilok C, Collins F H, Harbach R E, Baimai V, Butlin R K. 1999. Identification of five species of the Anopheles dirus complex from Thailand, using allele-specific polymerase chain reaction. Medical and Veterinary Entomology 13: 24-32.315

Wang J, Wong G K S, Ni P et al. 2002. RePS: A sequence assembler that masks exact repeats identified from the shotgun data. Genome Research 12: 824-831.

Weedall G D, Riveron J M, Hearn J, Irving H, Kamdem C, Fouet C, White B J, Wondji C S. 2020. An Africa-wide genomic evolution of insecticide resistance in the malaria vector Anopheles funestus involves selective sweeps, copy number variations, gene conversion and transposons. PLOS Genetics 16: e1008822.

Zhou D, Zhang D, Ding G et al. 2014. Genome sequence of Anopheles sinensis provides insight into genetics basis of mosquito competence for malaria parasites. BMC Genomics 15.