Behavioural Responses of the Solitary Endoparasitoid Cotesia vestalis (Haliday) to Damaged Cabbage

Authors

  • Abuzid I Department of Plant Protection, Faculty of Agriculture, University of Tripoli, PO Box 13275, Tripoli https://orcid.org/0000-0002-2789-1574
  • Mansour S Department of Zoology, Omar Al-Mukhtar University, PO Box 919 Al-Bayda
  • Khalid A Saad Department of Biology, Faculty of Education, Derna University
  • Kermani Nadia Department of Zoology, Faculty of Science, Zawia University, Zawia
  • Idris A B School of Environmental and Natural Resource Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor
  • Mohamad Roff Noor Agrobiodiversity Environment Research Centre, MARDI Headquarter Persiaran, MARDI-UPM, 43400, Serdang Selangor
  • Mohd Hanifah Y Agrobiodiversity Environment Research Centre, MARDI Headquarter Persiaran, MARDI-UPM, 43400, Serdang Selangor
  • Shukri M Agrobiodiversity Environment Research Centre, MARDI Headquarter Persiaran, MARDI-UPM, 43400, Serdang Selangor
  • Mirad R Horticulture Research Centre and Strategic Resources Research Centre, MARDI Headquarter Persiaran, MARDI-UPM, 43400, Serdang Selangor

DOI:

https://doi.org/10.55446/IJE.2024.2319

Keywords:

Cotesia vestalis, Plutella xylostella, parasitoids, herbivorous, plant volatiles, Brassica, Y-olfactometer, screen cage, bioassays, plant mediated attraction, IPM, olfactory responses

Abstract

Cotesia vestalis (Haliday) is the key biological control agent of Plutella xylostella L, the diamond back moth. This study investigated the influence of induced chemical defenses in cabbage (Brassica oleracea) on the olfactory responses of C. vestalis females. Herbivores trigger plants to release more volatile organic compounds (VOCs), attracting natural enemies. This study hypothesized that C. vestalis would be more attracted to specific volatiles emitted from differently herbivore-damaged cabbage compared to undamaged plants. Y-olfactometer experiments revealed that C. vestalis females were significantly more attracted to volatiles emitted by P. xylostella-damaged cabbage. This preference was also observed for plants damaged by Crocidolomia spp. Gas chromatography analysis confirmed qualitative and quantitative differences in volatile profiles between damaged and undamaged cabbage. Findings suggest that induced plant volatiles play a critical role in attracting C. vestalis to host plants, highlighting the potential for using plant-mediated attraction to enhance biological control strategies.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-10-08

How to Cite

I, A., S, M., Saad, K. A., Nadia, K., A B, I., Noor, M. R., … R, M. (2024). Behavioural Responses of the Solitary Endoparasitoid <i>Cotesia vestalis</i> (Haliday) to Damaged Cabbage. Indian Journal of Entomology. https://doi.org/10.55446/IJE.2024.2319

Issue

Section

Research Articles

References

Abuzid I, Mohamad Roff M N, Salam M, Mohd Hanifah Y, Abd Ghani I. 2014a. Responses of naive female DBM (Plutella xylostella) to volatile organic chemicals of selected Brassicaceae plants. ARPN Journal of Engineering and Applied Sciences 9(8).

Abuzid I, Mohamad Roff M N, Salam M, Kermani N, Mohd Hanifah Y, Abd Ghani I. 2014b. Effects of Chinese mustard Brassica juncea volatiles on the olfactory responses of Plutella xylostella. Middle-East Journal of Scientific Research 22(4): 584-590.

Alborn T, Turlings T C J, Jones T H, Steinhagen G, Loughrin J H, Tumlinson J H. 1997. An elicitor of plant volatiles from beet armyworm oral secretion. Science 276(5314): 945-949.

Allmann S, Baldwin I T. 2010. Insects betray themselves in nature to predators by rapid isomerization of green leaf volatiles. Science 27; 329(5995): 1075-8.

Ayelo P M, Yusuf A A, Pirk C W, Chailleux A, Mohamed S A, Deletre E. 2021. Terpenes from herbivore-induced tomato plant volatiles attract Nesidiocoris tenuis (Hemiptera: Miridae), a predator of major tomato pests. Pest Management Science 77(11): 5255-67.

Blande J D. 2021. Effects of air pollution on plant–insect interactions mediated by olfactory and visual cues. Current Opinion in Environmental Science and Health 1(19): 100228.

Blažytė-Čereškienė L, Aleknavičius D, Apšegaitė V and Būda V. 2022. Response of parasitic wasp Cotesia glomerata L. (Hymenoptera: Braconidae) to cabbage plants of two varieties: Olfactory spectra of males and females. Journal of Economic Entomology 115(5): 1464-1471.

Bruinsma M, Dicke M. 2008. Herbivore-induced indirect defence: From induction mechanisms to community ecology. In Induced Plant Resistance to Herbivory (pp. 31-60). Springer Publishers.

Cao S, Huang T, Shen J, Liu Y, Wang G. 2020. An orphan pheromone receptor affects the mating behavior of Helicoverpa armigera. Frontiers in Physiology. 30;11:413.

Caarls L, Mousa R, Strijker M F, Vosman B, van't Westende W P. 2021. Natural pest management-genetic variation in volatile production in cabbage: Breeding for enhanced attraction of natural enemies. Wageningen University and Research.

Conboy N J, McDaniel T, George D, Ormerod A, Edwards M, Donohoe P, Gatehouse A M, Tosh C R. 2020. Volatile organic compounds as insect repellents and plant elicitors: an integrated pest management (IPM) strategy for glasshouse whitefly (Trialeurodes vaporariorum). Journal of Chemical Ecology 46: 1090-104.

Debnath R, Bhattacharyya B, Koner A, Barik A. 2023. Semiochemicals from Trichosanthes anguina (Cucurbitaceae) plants influence behavior in Diaphania indica. Pest Management Science 79(11): 4295-308.

Dicke M. 1999. Specificity of herbivore-induced plant defences. Novartis Foundation Symposium 223: 43-54.

Franco F P, Túler A C, Gallan D Z, Gonçalves F G, Favaris A P, Peñaflor M F, Leal W S, Moura D S, Bento J M, Silva-Filho M C. 2021. Fungal phytopathogen modulates plant and insect responses to promote its dissemination. The ISME Journal 15(12): 3522-33.

Furlong M J, Wright D J, Dosdall L M. 2013. Diamondback moth ecology and management: problems, progress, and prospects. Annual Review of Entomology 58(1): 517-41.

Geervliet J B F, Vet L E M, Dicke M. 1994. Volatiles from damaged plants as major cues in long-range host-searching by the specialist parasitoid Cotesia rubecula. Entomologia Experimentalis et Applicata 73(3): 289-297.

Girling R D, Stewart-Jones A, Dherbecourt J, Staley J T, Wright D J, Poppy G M. 2011. Parasitoids select plants more heavily infested with their caterpillar hosts: a new approach to aid interpretation of plant headspace volatiles. Proceedings of the Royal Society B: Biological Sciences 278(1718): 2646-53.

Heil M, Lion U, Boland W. 2008. Defense-inducing volatiles: in search of the active motif. Journal of Chemical Ecology 34: 601-4.

Kermani N, Abu Hassan Z A, Suhaimi A, Abuzid I, Ismail N F, Attia M, Ghani I A. 2014. Parasitism performance and fitness of Cotesia vestalis (Hymenoptera: Braconidae) infected with Nosema sp. (Microsporidia: Nosematidae): Implications in integrated pest management strategy. PLoS One 9(6): e100671.

Kumazaki M, Matsuyama S, Suzuki T, Kuwahara Y, Fujii K. 2000. Parasitic wasp, Dinarmus basalis, utilizes oviposition-marking pheromone of host azuki bean weevils as host-recognizing kairomone. Journal of Chemical Ecology 26(12): 2677-2695.

Lin P, Chan W, Cai L, Dankowicz E, Gilbert K, Pierce N, Felton G. 2024. The links between plant volatiles and host plant specialization of herbivores. Res. Sq 2-38.

Ohara Y, Takabayashi J, Takahashi S. 1996. Oviposition kairomones in the cuticular wax of host larvae, Pseudaletia separata, toward its parasitic wasp, Cotesia kariyai. Applied Entomology and Zoology 31(3): 271-277.

Olsen O, Sørensen H. 1981. Recent advances in the analysis of glucosinolates. Journal of the American Oil Chemists’ Society 58(9): 857-65.

Ozawa R, Ohara Y, Shiojir K, Uchida T, Kakibuchi K, Kugimiya S, Uefune M, Takabayashi J. 2018. Uninfested plants and honey enhance the attractiveness of a volatile blend to a parasitoid Cotesia vestalis. Journal App. Entomology 142: 1-7.

Paré P W, Tumlinson J H. 1999. Plant volatiles as a defense against insect herbivores. Plant Physiology 121(2): 325-331.

Parsons J. 2021. The effects of Brassica cropping systems on the abundance and behaviour of Plutella xylostella parasitoids (Master's thesis, Itä-Suomen yliopisto).

Pierre P S, Jansen J J, Hordijk C A, van Dam N M, Cortesero A M, Dugravot S. 2011. Differences in volatile profiles of turnip plants subjected to single and dual herbivory above- and below ground. Journal of Chemical Ecology 37(4): 368-377.

Risticevic S, Lord H, Gorecki T, Arthur C L, Pawliszyn J. 2010. Protocol for solid-phase microextraction method development. Nature Protocols 5(1): 122-39.

Saad K A, Mohamad Roff M N, Mohd Shukri M A, Mirad R, Salam M, Abuzid I, Hanifah M Y, Abd Ghani I. 2014. Artificial damage induction in the leaves of chilli plants leads to the release of volatiles that alter the host plant selection behaviour of Bemisia tabaci (Hemiptera: Aleyrodidae). Journal of Entomology 11(5): 273-282.

Saini A, Sharma P L, Chandel R S. 2019. Host age influence on the parasitism of the species Cotesia vestalis (Haliday) (Hymenoptera: Braconidae). Egypt Journal of Biological Pest Control 29: 48.

Shi M, Chen Y F, Huang F, Liu P C, Zhou X P, Chen X X. 2008. Characterization of a novel gene encoding ankyrin repeat domain from Cotesia vestalis polydnavirus (CvBV). Virology 375(2): 374-382.

Shiojiri K, Takabayashi J, Yano S, Takafuji A. 2000. Flight response of parasitoid toward plantherbivore complexes: a comparative study of two parasitoid-herbivore systems on cabbage plants. Applied Entomology and Zoology 35: 87-92.

Shiojiri K, Ozawa R, Kugimiya S. 2010. Herbivore-specific, density-dependent induction of plant volatiles: Honest or “cry wolf” signals? PLoS One 5(8): e12161.

Takabayashi J, Sabelis M W, Janssen A, Shiojiri K, Wijk M. 2006. Can plants betray the presence of multiple herbivore species to predators and parasitoids? The role of learning in phytochemical information networks. Ecological Research 21(1): 3-8.

Takabayashi J, Shiojiri K. 2019. Multifunctionality of herbivory-induced plant volatiles in chemical communication in tritrophic interactions. Current Opinion in Insect Science 32: 110-117.

Tripathi M K, Mishra A S. 2007 Glucosinolates in animal nutrition: A review. Animal Feed Science and Technology 32(1-2): 1-27.

Turlings T C J, Tumlinson J H, Heath R R, Proveaux A T, Doolittle R E. 1991. Isolation and identification of allelochemicals that attract the larval parasitoid, Cotesia marginiventris (Cresson), to the microhabitat of one of its hosts. Journal of Chemical Ecology 17(12): 2235-2251.

Wang B, Dong W, Li H, D’Onofrio C, Bai P, Chen R, Yang L, Wu J, Wang X, Wang B, Ai D. 2022. Molecular basis of (E)-β-farnesene-mediated aphid location in the predator Eupeodes corollae. Current Biology 32(5): 951-62.

Yang G, Zhang Y N, Gurr G M, Vasseur L, You M S. 2016. Electroantennogram and behavioral responses of Cotesia plutellae to plant volatiles. Insect Science 23: 245-252.

Most read articles by the same author(s)