Bacillus thuringiensis Isolates and their Cry Genes Toxic to Chickpea Pod Borer Helicoverpa armigera (Hubner) from Ethiopia

Authors

  • Lemmessa Gemmeda Arsi University, Department of Plant Sciences, Assela
  • Emana Getu Addis Ababa University, College of Natural and Computational Sciences, Addis Ababa
  • Diriba Muleta Addis Ababa University, Institute of Biotechnology, Addis Ababa

DOI:

https://doi.org/10.55446/IJE.2024.2107

Keywords:

Bioinsecticide, Bt, cry genes, crystal protein, Ethiopia, Helicoverpa armigera, larval mortality, pathogenecity, pod damage, grain yield, toxicity, AUGHS-1, AUSD-1

Abstract

Helicoverpa armigera (Hubn) is one of the most destructive insect pests of chickpea in Ethiopia. For sustainable management of insect pests of food crops, Bacillus thuringiensis (Bt) is a widely used bioinsecticide. This study was aimed at exploring indigenous Bt isolates that harbour cry genes to control H. armigera. Ten indigenous Bt isolates were analyzed for their cry genes. Accordingly, all the indigenous Bt isolates were observed to harbour two or more cry genes. Statistically significant (p<0.05) variations were observed among Bt species in influencing larval incidence, pod damage (%) and grain yield (t/ ha). Three potential indigenous Bt isolates were identified with their respective cry genes that included KDL (cry2 + cry4), AUGHS-1 (cry1 + cry4), and AUSD-1 (cry1 + cry2 + cry4 + cry7, 8 + cry9). Indigenous Bt isolates exhibited a strong potential in the management of chickpea pod borer. Development of commercial bioinsecticide and other Bt technologies using B. thuringiensis from Ethiopian sources will be a new avenue to be addressed.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-08-05

How to Cite

Gemmeda, L., Getu, E., & Muleta, D. (2024). <i>Bacillus thuringiensis</i> Isolates and their Cry Genes Toxic to Chickpea Pod Borer <i>Helicoverpa armigera</i> (Hubner) from Ethiopia. Indian Journal of Entomology, 1–8. https://doi.org/10.55446/IJE.2024.2107

Issue

Section

Research Articles

References

Abayneh E., Demeke T. Gebeyehu B.and Kebede A. 2003. Soil of Kulumsa Agricultural Research Center. National Soil Research Center (NSRC), Soil survey and Land Evaluation. Technical Paper No.76.

Abirami P, Kkani P, Suguna P, Saranya V, Peter S, and Rajaiah S. 2016. Phenotypic characterization of an indigenous Bacillus thuringiensis strain (B.T. LDC 501) expressing cancer cell killing protein. Journal of Experimental Biology Agricultural Sciences 4(2): 232-241.

Adilkhankyzy A, Alpysbayeva K, Nurmanov B, Naimanova B, Bashkarayev N, Kenzhegaliev A, and Uspanov A. 2022. Integrated Protection of Tomato Crops against Tuta absoluta in Open Ground Conditions in the South-East Part of Kazakhstan. Journal of Experimental Biology Agricultural Sciences 22(4): 539-548. https://doi.org/10.3844/ojbsci.2022.539.548

Ahmed H, Ali S, Abdul-Raouf U. 2015. Isolation , characterization and molecular identification of Bacillus thuringiensis Alex-13 isolated from Egypt against Spodoptera littoralis. IJOMAS 2(2): 34-44.

Al-joda B, and Jasim A. 2021. Biochemical Testing Revision For Identification Several Kinds of Bacteria. JUB 29(2): 168-176.

Ammouneh H, Harba M, Idris E, and Makee H. 2011. Isolation and characterization of native Bacillus thuringiensis isolates from Syrian soil and testing of their insecticidal activities against some insect pests. Turkish Journal of Agriculture and forestry 35(4): 421-431. https://doi.org/10.3906/tar-1007-1117

Aynalem B, Muleta D, Venegas J, and Assefa F. 2021. Isolation , molecular characterization and pathogenicity of native Bacillus thuringiensis, from Ethiopia, against the tomato leafminer, Tuta absoluta : Detection of a new high lethal phylogenetic group. Microbiology Research Journal 250: 1-10.

Baig D, Bukhari D, and Shakoori A. 2010. cry Genes profiling and the toxicity of isolates of Bacillus thuringiensis from soil samples against American bollworm, Helicoverpa armigera. Journal of Applied Microbiology 109(6): 1967-1978.

Ben-Dov E, Zaritsky A, Dahan E, and Barak Z, et al. 1997. Extended Screening by PCR for Seven cry -Group Genes from Field-Collected Strains of Bacillus thuringiensis. Applied Environmental Microbiology 63(12): 4883-4890.

Bravo A, Gómez I, Porta H, García-Gómez I, Rodriguez-Almazan C, Pardo L, and Soberón M. 2013. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microbial Biotechnology 6(1): 17-26.

Baig, D., Bukhari, D., and Shakoori, A. (2010). cry Genes profiling and the toxicity of isolates of Bacillus thuringiensis from soil samples against American bollworm, Helicoverpa armigera. Journal of Applied Microbiology 109(6): 1967-1978.

Chandrashekar K, Archana K, Kalia V, and Gujar G. 2015. Baseline susceptibility of the American bollworm, Helicoverpa armigera (Hübner) to Bacillus thuringiensis Berl var. kurstaki and its endotoxins in India. Current Science 88(1): 167-175.

Dadi L, Regassa S, Fikre A, Mitiku D, Gaur P, Gowda C, and Bantilan M. 2005. Adoption studies on improved chickpea varieties in Ethiopia. 35 pp.

Das S, Pradhan S, Samal K, and Singh N. 2021. Structural, functional, and evolutionary analysis of Cry toxins of Bacillus thuringiensis: an in silico study. Egypt Journal of Biological Pest Control 31(44): 2-14.

Dulmage T. 1971. Production of δ-Endotoxin by Eighteen Isolates of Bacillus thuringiensis, Serotype 3, in 3 Fermentation Media. Journal Invertebr 18: 353-358.

Gemmeda L, Getu E, and Muleta D. 2023. Pathogenecity testing of indigenous Bacillus thuringiensis isolates against chickpea pod borer, Helicoverpa armigera (Hübner) ( Lepidoptera : Noctuidae) in Ethiopia. Crop Protection 174: 1-9.

Gholamveisi N, Azar S, Moravej R. 2018 Bacillus thuringiensis strain NG, a Novel Isolated Strain for production of Various Polyhydroxyalkanoates. BJM 6 (24): 13-20.

Ghosh T, Chatterjee S, Azmi S, Mazumdar A, Dangar T. 2017. Virulence assay and role of Bacillus thuringiensis TS110 as biocontrol agent against the larval stages of rice leaf folder Cnaphalocrocis medinalis. Journal Parasitic Diseases 41(2): 491-495.

Hassan A, Youssef M, Elashtokhy M, Ismail I, Aldayel M, Afkar E. 2021. Isolation and identification of Bacillus thuringiensis strains native of the Eastern Province of Saudi Arabia. Egypt Journal of Biological Pest Control 31(1): 1-11.

Hubé F, Reverdiau P, Iochmann S, Gruel Y. 2005. Improved PCR method for amplification of GC-rich DNA sequences. Molecular Biotechnology 31(1): 81-84.

Karen, R. (2010). Catalase Test Protocol. ASM MicrobeLibrary, November 2010, 1-9. http://www.microbelibrary.org/library/laboratory-test/3226-catalase-test-protocol

Jasmina O, Vladimir J, Natasa T, Jasminka M, Branislav P, Sonja P, and Natasa D. 2013. Optimization of PCR Conditions for Amplification of GC-Rich EGFRPromoter Sequence. Clinical Laboratory Anal ysis 27: 487-493.

Jyothi S, and Priya I. 2018. Isolation and Identification of Bacillus thuringiensis and Corroborate Its Insecticidal Property. Journal Agricultural Science Food Research 9(3): 4-6.

Karen R. 2010. Catalase Test Protocol. ASM Microbe Library, November 2010: 1-9. http://www.microbelibrary.org/library/laboratory-test/3226-catalase-test-protocol

Khojand S, Keshavarzi M, Zargari K, Abdolahi H, Rouzbeh F. 2013. Presence of multiple cry genes in Bacillus thuringiensis isolated from dead cotton bollworm Heliothis armigera. Agricutural Science Technology 15(6): 1285-1292.

Kumar G, Bhaskar L, Satish Y, Rehaman S. (2016). Evaluation of liquid formulations of Bt against gram pod borer, Helicoverpa armigera (Hubner) and spotted pod borer , Maruca vitrata (Geyer) in pigeonpea. Journal of Applied Biology and Biotechnology 4(01), 39-42.

Lateef S, Reed W. 1983. Crop losses due to insect pests. Indian Journnal of Entomology II (Special Issue): 284-293.

Leboffe M, Pierce B. 2016. Microbiology Laboratory Theory and Application (3rd ed.). Morton Publishing Company.

Liao C, Heckel D, Akhurst R. 2002. Toxicity of Bacillus thuringiensis insecticidal proteins for Helicoverpa armigera and Helicoverpa punctigera (Lepidoptera: Noctuidae), major pests of cotton. Journal Invertebry Pathology 80: 55-63.

Luis M, Marie T, Cassiana E, Ellena M. 2020. Color Atlas of Medical Bacteriology. American Society for Microbiology.

Mcfarland J. 1907. The Nephelometer: An Instrument for Estimating the Number of Bacteria in Suspensions used for Calculating the Opsonic Index and for Vaccines. JAMA 49(15): 1176-1178.

Peter S, Peter L, Brüno T. 1973. Production of Delta-Endotoxin by Bacillus thuringiensis as a Function of Glucose Concentrations. Applied Microbiology 25(4): 644-646.

Rabha M, Das D, Konwar T, Acharjee S, Sarmah B. 2023. Whole genome sequencing of a novel Bacillus thuringiensis isolated from Assam soil. BMC Microbiology 23(1): 1-14.

Reiner K. 2012. Carbohydrate Fermentation Protocol. ASM, November 2012: 1-10.

Rosane B, and Fernando H. 2013. Molecular characterization of Bacillus thuringiensis using rep-PCR. Springer Plus 2(1): 1-6.

Rubio-Infante N, Moreno-Fierros L. 2016. An overview of the safety and biological effects of Bacillus thuringiensis Cry toxins in mammals. Journal of Applied Toxicology 36(5): 630-648.

SAS. 2013. Statistical Analysis Software. User’s Gude Statistics Version 9.4. SAS Institute Inc.,Cary. https://www.sas.com/en_us/legal/editorial-guidelines.html

Singh S. Dhkal M. (2019). Management of gram caterpillar, Helicoverpa armigera (Hubner) with Bt formulation in chickpea under organic conditions. Legum Research I: 1-5

Smith A, Hussey M. 2005. Gram Stain Protocols. ASM: 1-9. www. asmscience.org

Smith A, and Hussey M. 2013. Endospore Stain Protocol. ASM, September 2007: 1-11. http://www.microbelibrary.org/component/resource/laboratory-test/

(WHO) World Health Organization. 2005. Guidelines for laboratory and field testing of mosquito larvicides. World Health Organization Communicable Disease Control, Prevention and Eradication Who Pesticide Evaluation Scheme. https://doi.org/Ref: WHO/CDS/WHOPES/GCDPP/2005.11

Zahid M, Islam M, Reza M, Prodhan M, Begum M. 2008. Determination of economic injury levels of Helicoverpa armigera (Hubner) in chickpea. Bangladesh Journal Agricultural Research 33(4): 555-563.