mtCO1 Analysis of the Butterfly Genus Papilio, from Indonesia

Authors

  • Roni Koneri Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University. Jl. Kampus Bahu, Manado 95115, North Sulawesi
  • Syamsul Bachry Department of Biology, Faculty of Life Sciences, Pahlawan University, Tuanku Tambusai No.23, Bangkinang, Kec. Bangkinang Kampar, Riau 28412
  • Beivy Jonathan Kolondam Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University. Jl. Kampus Bahu, Manado 95115, North Sulawesi

DOI:

https://doi.org/10.55446/IJE.2023.633

Keywords:

Butterfly Papilio spp., cytochrome C oxidase-I, North Sulawesi, sequences nucleotide, mtCO1 variations, comparisons, phylogenetic analyses, NcB accessions

Abstract

The genus Papilio is a butterfly that has many subspecies with similar phenotypes. So until now, researchers are still studying the genus Papilio based on morphology and genetics. Partial sequences of mitochondrial cytochrome oxidase-I (mtCOI) genes from individuals from 13 species of Papilionidae from North Sulawesi: Indonesia, Papua New Guinea, Malaysia: Negeri Sembilan, India: Assam, South Korea, China, Taiwan: Nantou, and Thailand: Fang, Chiang Mai have been compared in this study. Nucleotide divergences showed that the mean genetic distance between species was 0.023 (2.3%) to 0.723 (72.32%). Phylogenetic analysis revealed that groups of Papilionidae from North Sulawesi: Indonesia formed their own group; Species from Papua New Guinea are closely related to other Papilionidae species from other regions. There are 50 distinct sites or single nucleotide polymorphism (SNP) in the mtCO1 sequence of eleven species. These mtCO1 sequences can reveal the genetic differentiation of closely related species in the genus Papilio.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-05-18

How to Cite

Koneri, R. ., Bachry, S., & Kolondam, B. J. (2023). mtCO1 Analysis of the Butterfly Genus <i>Papilio</i>, from Indonesia. Indian Journal of Entomology, 86(1), 26–32. https://doi.org/10.55446/IJE.2023.633

Issue

Section

Research Articles

References

Akhilesh V P, Sebastian C D. 2014. Cytochrome oxidase subunit I gene based phylogenetic description of common mormon butterfly Papilio polytes (Lepidoptera: Papilionidae). IJSR 5(3): 977-980.

Bachry S, Solihin D D, Rudhy G, Kadarwan S, Butet N. 2019. Genetic diversity of the Haliotis diversificolor squamata from Southern Coastal Java (Banten, Pangandaran and Alas Purwo) and Bali based on mitochondrial CO1 sequences. TLSR 30(3): 83-93. DOI:10.21315/tlsr2019.30.3.6

Blaxter M, Mann J, Chapman T, Thomas F, Whitton C, Floyd R. Abebe E. 2005. Defining operational taxonomic units using DNA barcode data. Philosophical Transactions of the Royal Society B: Biological Sciences 360: 1935-1943.

Basset Y, Eastwood R, Sam L, Lohman D J, Novotny V, Treuer T, Miller S E, Weiblen G D, Pierce N E, Bunyavejchewin S, Sakchoowong W, Kongnoo P, Osorio-arenas M A. 2012. Cross-continental comparisons of butterfly assemblages in tropical rainforests: implications for biological monitoring. Insect Conserver Divers 6(3): 1-10.

Brower A V Z, DeSalle R. 1998. Patterns of mitochondrial versus nuclear DNA sequence divergence among nymphalid butterflies: the utility of wingless as a source of characters for phylogenetic inference. Insect Molecular Biology 7(1): 73-82.

Brower A V Z, Jeansonne M M. 2004. Geographical populations and “subspecies” of new world monarch butterflies (Nymphalidae) share a recent origin and are not phylogenetically distinct. Annals Entomological Society America. 97(3): 519-523.

Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791.

Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrate. Molecular Biology Biotechnology 3: 294-299.

Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PD. 2006. DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences 103: 968-971.

Hebert P D, Cywinska A, Ball S L, deWaard J R. 2003a. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B Biological Sciences 270: 313-321.

Hebert P D, Penton E H, Burns J M, Janzen D H, Hallwachs W. 2004b. Ten species in one: DNA barcoding reveals cryptic species in the Neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences 101: 14812-14817.

Hebert P D, Ratnasingham S, deWaard J R. 2003b. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London B Biological Sciences 270 (Suppl 1): S96-S99.

Hebert P D, Stoeckle M Y, Zemlak T S, Francis C M. 2004a. Identification of birds through DNA barcodes. PLoS Biology 2 (10): e312.

Huang Z H, Ke D H. 2015. DNA barcoding and phylogenetic relationships in Timaliidae. Genetic and Molecular Research 14: 5943-5949.

Janzen D H, Hajibabaei, Burns J M, Hallwachs W, Remigio E, Hebert P D.2005. Wedding biodiversity inventory of a large and complexLepidoptera fauna with DNA barcoding. Philosphical Transaction of the Royal Society of London B Biological Sciences 360: 1835-1845.

Koneri R, Maabuat PV. 2016. Diversity of Butterflies (Lepidoptera) in Manembo-Nembo Wildlife Reserve, North Sulawesi, Indonesia. PJBS 19(5): 202-210.

Koneri R, Nangoy M J, Siahaan P. 2019. The abundance and diversity of butterflies (Lepidoptera: Rhopalocera) in Talaud Islands, North Sulawesi, Indonesia. Biodiversitas 20 (11): 3275-3283.

Koneri R, Nangoy M J. 2019. Butterfly community structure and diversity in Sangihe Islands, North Sulawesi, Indonesia. Applied Ecology and Environmental Research 17(2): 2501-2517.

Koneri R, Maabuat PV, Nangoy MJ. 2020. The distribution and diversity of butterflies (Lepidoptera: Rhopalocera) in various urban forests in North Minahasa Regency, North Sulawesi Province, Indonesia. Applied Ecology and Environmental Research 18(2): 2295-2314.

Sekimura T, Matsubara A, Zhi-Hui S. 2017. Molecular phylogenetic relationship of African swallowtail butterflies, Papilio dardanus, P.phorcas, P. nireus, and P. demodocus, to Japanese papilionidbutterflies analyzed by DNA sequences of mitochondrial ND5,COI, and COII genes. Lepidoptera Science 68(2): 46-52.

Kristensen N P. 1976. Remarks on the family-level phylogeny of butterflies, (Insecta, Lepidoptera, Rhopalocera). Journal of Zoological and Systematics and Evolution Research 14(1): 25-33.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: Moleculer Evolutionary Genetics Analysis version 7.0 for bigger databasets. Molecular Biology and Evolution 33(7): 1870-1874.

Saitou N, Nei M. 1987. The neighbour-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406-425.

Simonsen T J, Zakharov E V, Djernaes M, Cotton A, Vane-Wright R I, Sperling F A H. 2011. Phylogeny, host plant associations and divergence time of Papilioninae (Lepidoptera: Papilionidae) inferred from morphology and seven genes with special focus on the enigmatic genera Teinopalpus and Meandrusa. Cladistics 27: 113-137.

Simonsen T J, de Jong R, Heikkila M, Kaila L. 2012. Butterfly morphology in a molecular age e Does it still matter in butterfly systematics?. Arthropod Structure and Development 41: 307-322.

Tallei T E, Nanggoy M J, Koneri R, Saroyo. 2015. Biodiversity Assessment of Mt. Tumpa Forest Park, North Sulawesi, Indonesia. Asian Journal of Biodiversity 6 (2): 1-21.

Tang J, Pruess K, Cupp E W, Unnasch T R. 1996. Molecular phylogeny and typing of blackflies (Diptera: Simuliidae) that serve as vectors of human or bovine onchocerciasis. Medical and Veterinary Entomology 10(3): 228-234.

Tsao W C, Yeh W B. 2008. DNA-based discrimination of subspecies of swallowtail butterflies (Lepidoptera: Papilioninae) from Taiwan. Zoological Studies 47(5): 633-643.

Vandewoestijne S, Baguette M, Brakefield P M, Saccheri I J. 2004. Phylogeography of Aglais urticae (Lepidoptera) based on DNA sequences of the mitochondrial CO1 gene and control region. Molecular Phylogenetics and Evolution 31(2): 630-646.

Von-Maria C, Helena K, Maria P, Jouko R. 2011. DNA barcoding: a tool for improved taxon identification and detection of species diversity. Biodiversity Conservation 20 (2): 373-389.

Ward R D, Zemlak T S, Innes B H, Last P R, Hebert P D. 2005. DNA barcoding Australia’s fish species. Philosphical Transaction of the Royal Society B Biological Sciences 360(1426): 1847-1857.

Waugh J. 2007. DNA barcoding in animal species: progress, potential and pitfalls. BioEssays 29(2): 188-197.

Wilcox T P, Lugg H, Zeh J A, Zeh D W. 1997. Mitochondrial DNA sequencing reveals extreme genetic differentiation in a cryptic species complex of Neotropical pseudoscorpions. Molecular Phylogenetics and Evolution 7(2): 208-216.

Xiang B, Kochar T D. 1991. Comparison of mitochondrial DNA sequences of seven morphospecies of black flies (Diptera). Genome 34: 306-311.

Zakharov E V, Caterino M S, Sperling F A H. 2004. Molecular Phylogeny, Historical Biogeography, and Divergence Time Estimates for Swallowtail Butterflies of the Genus Papilio Lepidoptera: Papilionidae). Systamatic Biology 53: 193-215.