Molecular Mechanism Underlying Symptom Development in Phytoplasma Associated Diseases - The Key Players and their Role


  • Suman Lakhanpaul Department of Botany, University of Delhi, Delhi-110007
  • Vibhuti Singh Department of Botany, University of Delhi, Delhi-110007
  • Sachin Kumar Department of Botany, University of Delhi, Delhi-110007
  • Amrita Singh Department of Botany, University of Delhi, Delhi-110007
  • Pratima Verma Department of Botany, University of Delhi, Delhi-110007
  • Shubhangi Kalla Department of Botany, University of Delhi, Delhi-110007



Pathogens, effector molecules, phyllogeny, miRNA


Phytoplasma, plant pathogenic Mollicutes that have a trans-kingdom life cycle, are insect transmitted and have been found to be associated with yield affecting traits in a large number of taxa. Many peculiar symptoms observed in the host taxa are often results of dramatic alterations in the normal development program that are generally controlled at the meristematic regions located in the shoot apices. Phytoplasma being vasculature limited are thus able to bring about genetic reprogramming in the regions of host plant that are far removed from their natural niche namely sieve elements of the phloem. Several proteins secreted by phytoplasma in the host plants have been identified and termed as effector molecules namely SAP54, SAP11, TENGU, SAP21 etc. that enable the colonisation, survival, spread of phytoplasma and also bring about dramatic alterations in the host plant. Nevertheless, the mechanisms underlying these peculiar phenomena are far from understood and remain a challenging area for the phytoplasma biologists. A thorough understanding of the processes involved is needed to provide platforms for developing control measures for phytoplasma associated diseases that will also enhance basic understanding on the plant developmental programs affected.


Download data is not yet available.


Metrics Loading ...




How to Cite

Lakhanpaul, S., Singh, V., Kumar, S., Singh, A., Verma, P., & Kalla, S. (2023). Molecular Mechanism Underlying Symptom Development in Phytoplasma Associated Diseases - The Key Players and their Role. Indian Journal of Entomology, 85(4), 1127–1136.



Review Articles


Anabestani A, Izadpanah K, Abba S, Galetto L, Ghorbani A, Palmano S. Marzachi C. 2017. Identification of putative effector genes and their transcripts in three strains related to ‘Candidatus Phytoplasma aurantifolia’. Microbiological Research 199: 57-66.

Aurin M B, Haupt M, Gorlach M, Rumpler F, TheißenG. 2020. Structural requirements of the phytoplasma effector protein SAP54 for causing homeotic transformation of floral organs. Molecular Plant-Microbe Interactions 33(9): 1129-1141.

Bai X, Correa V R, Toruno T Y, Ammar E D, Kamoun S, Hogenhout S A. 2009. AY-WB phytoplasma secretes a protein that targets plant cell nuclei. Molecular Plant-Microbe Interactions 22(1): 18-30.

Bartel B, Bartel D P. 2003. MicroRNAs: at the root of plant development? Plant Physiology132 (2): 709-717.

Bartel D P. 2004. MicroRNAs: genomics biogenesis mechanism and function. Cell 116(2): 281-297.

BoganAA, Thorn K S. 1998. Anatomy of hot spots in protein interfaces. Journal of Molecular Biology 280(1): 1-9.

Cao X, Zhai X, Zhang Y, Cheng Z, Lix, Fan G. 2018. Comparative analysis of mies expression in three Paulownia species with Phytoplasma infection. Forests 9(6): 302.

Chang S H, Tan C M, Wu C T, Lin T H, Jiang S Y, Liu R C, Yang J Y. 2018. Alterations of plant architecture and phase transition by the phytoplasma virulence factor SAP11. Journal of Experimental Botany 69(22): 5389-5401.

Chen H M, Chen L T, Patel K, Li Y H, Baulcombe D C, Wu S H. 2010. 22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proceedings of the National Academy of Sciences 107(34): 15269-15274.

Chen W, Li Y, Wang Q, Wang N, Wu Y. 2014. Comparative genome analysis of wheat blue dwarf phytoplasma an obligate pathogen that causes wheat blue dwarf disease in China. PLoSOne9(5): e96436.

Chiou T J, Aung K, Lin S I, Wu C C, Chiang S F, Su C L. 2006. Regulation of phosphate homeostasis by microRNA in Arabidopsis. The Plant Cell 18(2): 412-421.

Chisholm S T, Coaker G, Day B, Staskawicz B J. 2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124(4): 803-814.

Chitarra W, Pagliarani C, Abba S, Boccacci P, Birello G, Rossi M, Gambino G. 2018. miRVIT: a novel miRNA database and its application to uncover Vitisresponses to Flavescence doree infection. Frontiers in Plant Science 9: 1034.

Du H, Yang S S, Liang Z, Feng B R, Liu L, Huang Y B, Tang Y X. 2012. Genome wide analysis of the MYB transcription factor super family in soybean. Plant Biology12(1):106.

Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L, 2010. MYB transcription factors in Arabidopsis. Trends in Plant Science 15 (10): 573-581.

Ehya F, Monavar feshani A, Fard E M, Farsad L K, Nekouei M K, Mardi M, Salekdeh G H. 2013. Phytoplasma-responsive microRNAs modulate hormonal nutritional and stress signalling pathways in Mexican lime trees. PloS One 8(6): e66372.

Fan G, Cao Y, Wang Z. 2018. Regulation of long noncoding RNAs responsive to phytoplasma infection in Paulownia tomentosa. International Journal of Genomics 2018.

Fan G, Niu S, Xu T, Deng M, Zhao Z, Wang Y,Wang Z. 2015. Plant-pathogen interaction-related microRNAs and their targets provide indicators of phytoplasma infection in Paulownia tomentosa× Paulownia fortunei. PLoSOne 10(10): e0140590.

Farmer L M, Book A J, Lee K H, Lin Y L, Fu H Y, Vierstra R D. 2010. The RAD23 family provides an essential connection between the 26S proteasome and ubiquitylated proteins in Arabidopsis. Plant Cell 22: 124-142.

Gai Y P, Li Y Q, Guo F Y, Yuan C Z, Mo Y Y, Zhang H L, Ji X L. 2014. Analysis of Phytoplasma-responsive sRNAs provide insight into the pathogenic mechanisms of mulberry yellow dwarf disease. Scientific Reports 4: 5378.

Gai Y P, Zhao H N, Zhao Y N, Zhu B S, Yuan S S, Li S, Ji X L. 2018. MiRNA-seq-based profiles of miRNAs in mulberry phloem sap provide insight into the pathogenic mechanisms of mulberry yellow dwarf disease. Scientific Reports 8(1): 1-19.

Hasunuma T, Fukusaki E I, Kobayashi A. 2004. Expression of fungal pectin methylesterase in transgenic tobacco leads to alteration in cell wall metabolism and a dwarf phenotype. Journal of Biotechnology 111(3): 241-251.

Hogenhout S A, Loria R. 2008. Virulence mechanisms of gram-positive plant pathogenic bacteria. Current Opinion in Plant Biology 11(4): 449-456.

Hogenhout S A, Ammar E D, Whitfield A E, Redinbaugh M G. 2008. Insect vector interactions with persistently transmitted viruses. Annual Review of Phytopathology 46: 327-359.

Hoshi A, Oshima K, Kakizawa S, Ishii Y, Ozeki J, Hashimoto M, Namba S. 2009. A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proceedings of the National Academy of Sciences 106(15): 6416-6421.

Iwabuchi N, Kitazawa Y, Maejima K, Koinuma H, Miyazaki A, Matsumoto O, Yamaji Y. 2020. Functional variation in phyllogen a phyllody inducing phytoplasma effector family attributable to a single amino acid polymorphism. Molecular Plant Pathology 21(10): 1322-1336.

Iwabuchi N, Maejima K, Kitazawa Y, Miyatake H, Nishikawa M, Tokuda R, Koinuma H, Miyazaki A, Nijo T, Oshima K. 2019. Crystal structure of phyllogen a phyllody-inducing effector protein of phytoplasma. Biochemical and Biophysical Research Communities 513: 952-957.

Janik K, Mithofer A, Raffeiner M, Stellmach H, Hause B, Schlink K. 2017. An effector of apple proliferation phytoplasma targets TCP transcription factorsa generalized virulence strategy of phytoplasma?. Molecular Plant Pathology 18(3): 435-442.

Jetha K, Theißen G, Melzer R. 2014. Arabidopsis SEPALLATA proteins differ in cooperative DNA-binding during the formation of floral quartet-like complexes. Nucleic Acids Research 42: 10927-10942.

Jomantiene R, Zhao Y, Davis R E. 2007. Sequence-variable mosaics: composites of recurrent transposition characterizing the genomes of phylogenetically diverse phytoplasmas. DNA and Cell Biology 26: 557-564.

Kaur H, Yadav C B, Alatar A A, Faisal M, Jyothsna P, Malathi V G, Praveen S. 2015. Gene expression changes in tomato during symptom development in response to leaf curl virus infection. Journal of Plant Biochemistry and Biotechnology 24(3): 347-354.

Kitazawa Y, Iwabuchi N, Himeno M, Sasano M, Koinuma H, Nijo T, Namba S. 2017. Phytoplasma-conserved phyllogen proteins induce phyllody across the Plantae by degrading floral MADS domain proteins. Journal of Experimental Botany 68(11): 2799-2811.

Liang G, Yang F, Yu D. 2010. MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. The Plant Journal 62 (6): 1046-1057.

Liao Y T, Lin S S, Lin S J, Sun W T, Shen B N, Cheng H P,Wang H C. 2019. Structural insights into the interaction between phytoplasmal effector causing phyllody and MADS transcription factors. The Plant Journal 100(4) 706-719.

Lu Y T, Li M Y, Cheng K T, Tan C M, Su L W, Lin W Y, Yang J Y. 2014. Transgenic plants that express the phytoplasma effector SAP11 show altered phosphate starvation and defense responses. Plant Physiology 164(3): 1456-1469.

Ma F, Huang J, Yang J, Zhou J, Sun Q, Sun J. 2020. Identification expression and miRNA targeting of auxin response factor genes related to phyllody in the witches’ broom disease of jujube. Gene: 144656.

MacLean A M, Orlovskis Z, Kowitwanich K, Zdziarska A M, Angenent G C, Immink R G. and Hogenhout S A. 2014. Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner. PlosBiology 12(4): e1001835.

MacLean A M, Sugio A, Makarova O V, Findlay K C, Grieve V M, Toth R, Hogenhout S A. 2011. Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant Physiology 157(2): 831-841.

Maejima K, Iwai R, Himeno M, Komatsu K, Kitazawa Y, Fujita N, Ishikawa K, Fukuoka M, Minato N, Yamaji Y. 2014. Recognition of floral homeotic MADS domain transcription factors by a phytoplasmal effector phyllogen induces phyllody. Plant Journal 78: 541-554.

Maejima K, Kitazawa Y, Tomomitsu T, Yusa A, Neriya Y, Himeno M, Yamaji Y, Oshima K. and Namba S. 2015. Degradation of class E MADS-domain transcription factors in Arabidopsis by a phytoplasmal effector phyllogen. Plant Signal Behavior 10: e1042635.

Matthewman C A, Kawashima C G, Huska D, Csorba T, Dalmay T, Kopriva S. 2012. miR395 is a general component of the sulfate assimilation regulatory network in Arabidopsis. FEBS letters 586 (19): 3242-3248.

Melzer R. and Theißen G. 2009. Reconstitution of floral quartets in vitro involving class B and class E floral homeotic proteins. Nucleic Acids Research 37: 2723-2736.

Melzer R, Verelst W, Theißen G. 2009. The class E floral homeotic protein SEPALLATA3 is sufficient to loop DNA in floral quartet-like complexes in vitro. Nucleic Acids Res 37: 144-157.

Minato N, Himeno M, Hoshi A, Maejima K, Komatsu K, Takebayashi Y, Namba S. 2014. The phytoplasmal virulence factor TENGU causes plant sterility by downregulating of the jasmonic acid and auxin pathways. Scientific Reports 4: 7399.

Mou H Q, Lu J, Zhu S F, Lin C L, Tian G Z, Xu X, Zhao W J. 2013. Transcriptomic analysis of paulownia infected by paulownia witches’-broom phytoplasma. PLoS One 8(10): e77217.

Music M S, Samarzija I, Hogenhout S A, Haryono M, Cho S T, Kuo C H. 2019. The genome of ‘Candidatus Phytoplasma solani’ strain SA-1 is highly dynamic and prone to adopting foreign sequences. Systematic and applied microbiology 42(2): 117-127.

Newman J R S, Wolf E, Kim P S. 2000. A computationally directed screen identifying interacting coiled coils from Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences 97 (24): 13203-13208.

Oshima K, Maejima K, Namba S. 2013. Genomic and evolutionary aspects of Phytoplasma. Frontiers in microbiology 4: 230.

Orlovskis Z, Canale M. C, Haryono M, Lopes J R S, Kuo C H, Hogenhout S A. 2017. A few sequence polymorphisms among isolates of Maize bushy stunt phytoplasma associate with organ proliferation symptoms of infected maize plants. Annals of Botany 119(5): 869-884.

Pant B D, Buhtz A, Kehr J, Scheible W R. 2008. MicroRNA399 is a long distance signal for the regulation of plant phosphate homeostasis. The Plant Journal 53(5): 731-738.

Pecher P, Moro G, Canale M C, Capdevielle S, Singh A, MacLean A, Hogenhout S A. 2019. PhytoplasmaSAP11 effector destabilization of TCP transcription factors differentially impact development and defense of Arabidopsis versus maize. PLoSPathogens 15(9): e1008035.

Rümpler F, Gramzow L, Theißen G, Melzer R. 2015. Did convergent protein evolution enable Phytoplasmas to generate ‘zombie plants’?. Trends in Plant Science 20(12): 798-806.

Rubio-Somoza I, Weigel D. 2013.Coordination of flower maturation by a regulatory circuit of three microRNAs. PLoS Genetics 9(3): e1003374.

Rümpler F, Theißen G, Melzer R. 2018. A conserved leucine zipper-like motif accounts for strong tetramerization capabilities of SEPALLATA-like MADS-domain transcription factors. Journal of Experimental Botany 69: 1943-1954.

Shao F, Zhang Q, Liu H, Lu S, Qiu D. 2016. Genome-wide identification and analysis of MicroRNAs involved in witches’ -broom phytoplasma response in Ziziphus jujuba. PloSOne 11(11): e0166099.

Shikata M, Yamaguchi H, Sasaki K, Ohtsubo N. 2012. Over expression of Arabidopsis miR157b induces bushy architecture and delayed phase transition in Torenia fournieri. Planta 236(4): 1027-1035.

Siewert C, Luge T, Duduk B, Seemuller E, Buttner C, Sauer S, Kube M. 2014. Analysis of expressed genes of the bacterium ‘Candidatus Phytoplasma mali’ highlights key features of virulence and metabolism. PLoS One 9(4): e94391

Smirnova E, Shurland D L, Newman-Smith E D, Pishvaee B, van der Bliek A M. 1999. A model for dynamin self-assembly based on binding between three different protein domains. Journal of Biological Chemistry 274: 14942-14947.

Synman M C, Solofoharivelo M C, Souza-Richards R, Stephan D, Murray S, Burger J T. 2017. The use of high-throughput small RNA sequencing reveals differentially expressed microRNAs in response to aster yellows phytoplasma-infection in Vitis vinifera cv. ‘Chardonnay’. PloSOne 12(8): e0182629.

Strohmayer A, Schwarz T, Braun M, Krczal G, Boonrod K. 2020. The anticipated potential nuclear localization sequence of ‘Candidatus phytoplasmamali’ SAP11-like protein is required for TCP binding but not for transport into the nucleus. BioRxiv.

Sugio A, Hogenhout S A. 2012. The genome biology of phytoplasma: Modulators of plants and insects. Current Opinion in Microbiology 15: 247-254.

Sugio A, MacLeanA M, Grieve V M, Hogenhout S A. 2011. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proceedings of the National Academy of Sciences 108(48): E1254-E1263.

Sugio A, MacLean A. M, Hogenhout S A. 2014. The small phytoplasma virulence effector SAP 11 contains distinct domains required for nuclear targeting and CIN-TCP binding and destabilization. New Phytologist 202(3):838-848.

Sugawara K, Honma Y, Komatsu K, Himeno M, Oshima K, Namba S. 2013. The alteration of plant morphology by small peptides released from the proteolytic processing of the bacterial peptide TENGU. Plant Physiology 162(4): 2005-2014.

Tan C M, Li C H, Tsao N W, Su L W, Lu Y T, Chang S H, Yang J Y. 2016. Phytoplasma SAP11 alters 3-isobutyl-2-methoxypyrazine biosynthesis in Nicotiana benthamiana by suppressing NbOMT1. Journal of Experimental Botany 67(14): 4415-4425.

Yu Y, Jia T, Chen X. 2017. The ‘how’ and ‘where’ of plant micro RNAs. New Phytologist 216(4): 1002-1017.

Wang N, Li Y, Chen W, Yang H. Z, Zhang P H, Wu Y F. 2018. Identification of wheat blue dwarf phytoplasma effectors targeting plant proliferation and defense responses. Plant Pathology 67(3): 603-609.

Wang Z, Liu W, Fan G, Zhai X, Zhao Z, Dong Y, Cao Y. 2017. Quantitative proteome-level analysis of paulownia witches’ broom disease with methyl methane sulfonate assistance reveals diverse metabolic changes during the infection and recovery processes. Peer Journal 5: e3495.

Zhao L, Luo Q, Yang C, Han Y, Li W. 2008. A RAV-like transcription factor controls photosynthesis and senescence in soybean. Planta 227 (6): 1389-1399.