Antioxidant Enzymes in Cotton Mealy Bug Phenacoccus Solenopsis Tinsley Exposed to High Temperature

Authors

  • K. Shankarganesh ICAR- Central Institute for Cotton Research, Regional Station, Coimbatore 641003, Tamil Nadu
  • K. Rameash ICAR- Central Institute for Cotton Research, Regional Station, Coimbatore 641003, Tamil Nadu
  • C. Selvi ICAR- Central Institute for Cotton Research, Regional Station, Coimbatore 641003, Tamil Nadu
  • S. Bagyaraj ICAR- Central Institute for Cotton Research, Regional Station, Coimbatore 641003, Tamil Nadu

DOI:

https://doi.org/10.55446/IJE.2021.330

Keywords:

Thermal stress, Phenacoccus solenopis, reactive oxygen species, catalase, superoxide dismutase, peroxidases, exposure, population variations,Bhatinda, Sri ganganagar, Rajkot, Guntur

Abstract

Effect of high temperature on the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and peroxidases (POD) in the third instar of Phenacoccus solenopsis was studied under laboratory condition. Temperature influences the level of antioxidant enzymes with exposure to high temperature (400C). There was a marked rise in catalase activity and the maximum activity (0.399 nmol/ min/ mg) was observed after 6 hr in Bhatinda population. Irrespective of the population, the activity of peroxidase was positively correlated with time of exposure, and maximum activity was observed in Sri Ganganagar (0.218 nmol/ min/ mg) population at 6 hr of exposure. Within the 3 hr of exposure the maximum activity of SOD (0.127 μM/ min /mg) was observed in Rajkot and at 4 hr (0.060± 0.019 μM/ min /mg) in Sri Ganganagar populations. With further increase in the period of exposure, significant reduction in the activity of SOD was observed, and it was maximum in Guntur populations (0.218 μM/ min/ mg) at 6 hr of exposure. Thus, the findings suggest that the exposure of mealybug to high temperature induce oxidative stress in P. solenopsis. In all the population high temperature stress induces the activity of antioxidant enzymes to overcome the oxidative cell damage in mealy bug.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2022-07-27

How to Cite

Shankarganesh, K. ., Rameash, K. ., Selvi, C., & Bagyaraj, S. (2022). Antioxidant Enzymes in Cotton Mealy Bug <i>Phenacoccus Solenopsis</i> Tinsley Exposed to High Temperature. Indian Journal of Entomology, 84(1), 101–104. https://doi.org/10.55446/IJE.2021.330

Issue

Section

Research Communications

References

Bradford M M. 1976. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of proteindye binding. Analytical Biochemistry 72: 248-254.

Cai P, Wang Y, Yi C, Zhang Q, Xia H, Lin J, Yang H Z J, Ji Q, Chen J. 2019. Effects of temperature on the activity of antioxidant enzymes in larvae of Bactrocera dorsalis (Diptera: Tephritidae) parasitized by Diachasmimorpha longicaudata (Hymenoptera: Braconidae): Optimizing the mass rearing of this braconid by varying the temperature. European Journal of Entomology 116: 1-9.

Dillon M E, Wang G, Garrity P A, Huey R B. 2009. Thermal preference in Drosophila. Journal of Thermal Biology 34: 109-119.

Dubovskiy I M, Martemyanov V V, Vorontsova, Y L, Rantala M J, Gryzanova E V Glupov V V. 2008. Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae). Comparative Biochemistry and Physiology, Part C, 148: 1-5.

Fand B B, Henri E Z T, Mahesh K, Bal, Santanu K, Singh, Naveen P, Rao D V K N, Kamble Ankush L, Nangare Dhananjay D, Minhas, Paramjit S. 2014. Predicting the impact of climate change on regional and seasonal abundance of the mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) using temperature driven phonology model linked to, Ecological Modeling 288: 62-78.

Foyer C H, Noctor G. 2000. Tansley Review 112. Oxygen processing in photosynthesis: regulation and signaling. New Phytologist 146: 359-388.

Jia F X, Dou W, Hu F, Wang J J. 2011. Effects of thermal stress on lipid peroxidation and antioxidant activities of Oriental fruit fly, Bacterocera dorsalis (Diptera: Tephritidae). Florida Entomologist 94: 956-963.

Kang Z W, Liu F H, Liu X, Yu W B, Tan X L, Zhang S Z, Tian H G, Liu T X. 2017. The potential coordination of the heat-shock proteins and antioxidant enzyme genes of Aphidius gifuensis in response to thermal stress. Frontiers in Physiology 8: 976.

Kumar S, Jaspreet K, Sidhu Hamm J C, Kular J S, Mahal M S. 2013. Effects of temperature and relative humidity on the life table of Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) on cotton. Florida Entomologist 96: 19-28.

Nagrare V S, Kranthi S, Kumar R, Dharajothi B, Amutha M, Deshmukh A J, Bisane K D, Kranthi K R. 2011. Compendium of cotton mealybugs. Technical Bulletin. Central Institute for Cotton Research, Nagpur. 42 pp.

Nikam N D, Patel B H, Korat D M. 2010. Biology of invasive mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) on cotton. Karnataka Journal of Agricultural Sciences 23: 649-651.

Prasad Y G, Prabhakar M, Sreedevi G, Ramachandra Rao G, Venkateswarlu B. 2012. Effect of temperature on development, survival and reproduction of the mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) on cotton. Crop Protection 39: 81-88.

Rishi Kumar, Jat S L, Pal V, Chauhan, R. 2010. Biology of the mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Psuedococcidae) in India. Entomon 34: 189-192.

Shankarganesh K, Selvi C, Karpagam C. 2020. Effects of thermal stress on the antioxidant defenses in Paracoccus marginatus Williams and Granara de Willink (Homoptera: Pseudococcidae) parasitized by Acerophagus papayae Noyes and Schauff (Encyrtidae: Hymenoptera). International Journal of Tropical Insect Science 10.1007/s42690-020-00222-8

Thannickal V J, Fanburg B L. 2000. Reactive oxygen species in cell signaling. The American Journal of Physiology- Lung Cellular and Molecular Physiology 279: 1005-1028

Vennila S, Deshmukh A J, Pinjarkar D, Agarwal M, Ramamurthy V.V, Joshi S, Kranthi K R, Bambawale O M. 2010. Biology of the mealybug, Phenacoccus solenopsis on cotton in the laboratory. Journal of Insect Science 10: 1-9.

Wang Y, Guo JJ, Chen JH, Ji QE. 2013. The changes of the activity of four enzymes in larvae of Bactrocera dorsalis (Hendel) parasitized by Diachasmimorpha longicaudata. Chinese Journal of Tropical Crops 34: 335-338

Wang Y, Oberley L W, Murhammer D W. 2001. Antioxidant defense systems of two lepidopteran insect cell lines. Free Radical Biology and Medicine 30: 1254-1262.

Waqas M S, Lin L, Shoaib A A Z, Cheng X, Zhang Q, Elabasy A S S, Shi Z. 2020a. Effect of constant and fluctuating temperature on the development, reproduction, survival, and sex ratio of Phenacoccus solenopsis (Hemiptera: Pseudococcidae). Environmental Entomology 49: 553-560.

Waqas M S, Saad Elabasy A S, Zaky Shoaib A A, Cheng X, Zhang Q, Shi Z. 2020b. Lethal and sublethal effect of heat shock on Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae), Journal of Thermal Biology https://doi.org/10.1016/j.jtherbio.2020.102679.

Yang L H, Huang H, Wang J J. 2010. Antioxidant responses of citrus red mite, Panonychus citri (McGregor) (Acari: Tetranychidae), exposed to thermal stress. Journal of Insect Physiology 56: 1871-1876.

Zhang S, Fu W, Li N, Zhang F, Liu T. 2015. Antioxidant responses of Propylaea japonica (Coleoptera: Coccinellidae) exposed to high temperature stress. Journal of Insect Physiology 73: 47-52.

Most read articles by the same author(s)