Population Dynamics of the Black Coffee Twig Borer Xylosandrus compactus (Eichhoff) in Robusta Coffee Coffea canephora

Authors

  • Winnie Nanjego National Coffee Research Institute (NaCORI), National Agricultural Research Organisation (NARO), P.O. Box 185 Mukono
  • Godfrey H. Kagezi National Coffee Research Institute (NaCORI), National Agricultural Research Organisation (NARO), P.O. Box 185 Mukono
  • Samuel Kyamanywa Makerere University, P.O. Box 7062, Kampala
  • Ronald Ssembajwe National Coffee Research Institute (NaCORI), National Agricultural Research Organisation (NARO), P.O. Box 185 Mukono
  • Judith Kobusinge National Coffee Research Institute (NaCORI), National Agricultural Research Organisation (NARO), P.O. Box 185 Mukono
  • Geofrey Arinaitwe National Coffee Research Institute (NaCORI), National Agricultural Research Organisation (NARO), P.O. Box 185 Mukono

DOI:

https://doi.org/10.55446/IJE.2024.2046

Keywords:

Xylosandrus compactus, adults, ambrosia-beetle, brood-size, eggs, larvae, pupae, seasonal incidence, rainfall, relative humidity, temperature, abundance, lifestages

Abstract

Population dynamics of Xylosandrus compactus (Eichhoff) lifestages in Robusta coffee were evaluated at the National Coffee Research Institute, Kituza, Uganda. Results revealed that its population and incidence varied with time, with brood size being highest in December and November 2020. Eggs were maximum in December 2020 and May 2021; larvae in November and December 2020 and May 2021; pupae in July 2021 and May 2021; and, adults in December 2020 and August 2021. Dead adults, live and total pupae decreased significantly (p≤0.05) with increasing temperature (R²=0.3435, 0.5598, 0.6017, respectively); eggs and dead pupae increased significantly (p≤0.05) with increasing rainfall (R²=0.5266, 0.6349, respectively); and, dead adults and live pupae decreased significantly (p≤0.05) with increasing relative humidity (R²=0.4383, 0.3635, respectively). This information will enable monitoring and predicting population buildup, and thus IPM decisions.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-04-05

How to Cite

Nanjego, W., Kagezi, G. H., Kyamanywa, S., Ssembajwe, R., Kobusinge, J., & Arinaitwe, G. (2024). Population Dynamics of the Black Coffee Twig Borer <i>Xylosandrus compactus</i> (Eichhoff) in Robusta Coffee <i>Coffea canephora</i>. Indian Journal of Entomology, 1–7. https://doi.org/10.55446/IJE.2024.2046

Issue

Section

Research Articles

References

Abbasi Q D, Jan N D, Mahar, A N, Khuhro R D, Nizamani S M, Panhwar A. 2008. Monitoring of ambrosia bark beetle through installation of sticky color traps at different heights in mango trees. International Journal of Fruit Science 7(3): 65-79.

Adams A S, Six D L. 2007. Temporal variation in mycophagy and prevalence of fungi associated with developmental stages of Dendroctonus ponderosae (Coleoptera: Curculionidae). Environmental Entomology 36: 64-72.

Adipala-Ekwamu, Opio O, Kyetere D, Hakiza G, Tushemereirwe W, Bua A, Kisanzi D, Koyobyo G 2001. Background and importance of Coffee Wilt Disease in Uganda. National Agricultural Research Organisation (NARO) Research Progress Report (1997-2000). pp. 1-16.

Atkinson T, Equihua-Martinez A. 1986. Biology of bark and ambrosia beetles (Coleoptera: scolytidae and Platypodidae) of a tropical rainforest in southeastern Mexico with an annotated checklist of species. Annals of the Entomological Society of America 79: 414-423.

Bale J S, Masters G J, Hodkinson I D, Awmack C, Bezemer T M, Brown V K, Butterfield J, Buse A, Coulson J C, Farrar J, Good J E G, Harrington R, Hartley S, Jones T H, Lindroth R L, Press M C, Symrnioudis I, Watt A D, Whittaker J B. 2002. Herbivory in global climate change research. Direct effects of rising temperature on insect herbivores. Global Change Biology 8: 1-16.

Batra L R. 1963. Ecology of ambrosia fungi and their dissemination by beetles. Transactions of the Kansas Academy of Science 66(2): 213-236.

Brader L. 1964. Etude de la relation entre le scolyte des rameaux du caféier Xyleborus compactus Eichh. (X. morstatti Hag.) et sa plante-hôte. Landbouwhogeschool Wageningen, Mededelingen 64: 109.

Brar G S, Capinera J L, Kendra P E, Smith J A, Peña J E. 2015. Temperature-dependent development of Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae). Florida Entomologist 98(3): 856-864.

Bucini D, Balestra G M, Pucci C, Paparatii B, Speranza S, Zolla C P, Varvaro L. 2005. Bio-ethology of Anisandrus dispar F. and its possible involvement in dieback (Moria) diseases of hazelnut (Corylus avelana L.) plants in Central Italy. Acta Horticult. 686: 435-443.

Bukomeko H, Jassogne L, Kagezi G H, Mukasa, D, Vaast, P. 2018. Influence of shaded systems on Xylosandrus compactus infestation in Robusta coffee along a rainfall gradient in Uganda. Agricultural and Forest Entomology 20(3): 327-333.

Burbano E G, Wright, M G, Gillette N E, Mori S, Dudley N, Jones T, Kaufmann M. (2012). Efficacy of traps, lures, and repellents for Xylosandrus compactus (Coleoptera: Curculionidae) and other ambrosia beetles on Coffea arabica plantations and Acacia koa Nurseries in Hawaii. Environmental Entomology 41(1): 133-140.

Burbano E. 2010. Developing a monitoring tool to understand the seasonal dynamics and management techniques to estimate a sampling plan for Xylosandrus compactus (Eichhoff) in Hawai’i. Ph.D. Dissertation, University of Hawaii at Manoa, Honolulu, USA. 157pp.

Chen Y, Aukema B, Seybold S. 2020. The Effects of Weather on the Flight of an Invasive Bark Beetle, Pityophthorus juglandis. Insects 11: 156.

Egonyu J P, Ahumuza G, Ogari I. 2016. Population dynamics of Xylosandrus compactus (Coleoptera: Curculionidae: Scolytinae) on Coffea canephora in the Lake Victoria Crescent agroecological zone of Uganda. African Zoology 51(3): 121-126.

Egonyu J P, Kagezi, G K, Kucel P, Ahumuza G, Ogogol R, Nakibuule L, Kobusinge J, Kyamanywa S, Wagoire W W. 2014. Phenology and infestation pattern of the coffee twig borer, Xylosandrus compactus. Proceedings. Twenty fifth International Conference on Coffee Science, Armenia, 2014. pp 42-46.

Egonyu J P, Kucel P, Kangire A, Sewaya F, Nkungwa C. 2009. Impact of the black twig borer on Robusta coffee in Mukono and Kayunga districts, central Uganda, Journal of Animal and Plant Sciences 2(4): 163-169.

Frank SD, Sadof C S. 2011. Reducing insecticide volume and nontarget effects of ambrosia beetle management in nurseries. Journal of Economic Entomology 104: 1960-1968.

Frost K E, Esker P D, Van Haren R, Kotolski L, Groves R L. 2013. Factors influencing aster leafhopper (Hemiptera: Cicadellidae) abundance and aster yellows phytoplasma infectivity in Wisconsin carrot fields. Environmental Entomology 42: 477-490.

Gaylord M L, Williams K K, Hofstetter R W, McMillin J D, Degomez T E, Wagner M R. 2008. Influence of temperature on spring flight initiation for southwestern ponderosa pine bark beetles (Coleoptera: Curculionidae, Scolytinae). Environmental Entomology 37: 57-69.

Greco E B, Wright M G. 2015. Ecology, biology, and management of Xylosandrus compactus (Coleoptera: Curculionidae: Scolytinae) with emphasis on coffee in Hawaii. Journal of Integrated Pest Management 6: 7.

Gugliuzzo A, Biedermann P H W, Carrillo D, Castrillo L A, Egonyu J P, Gallego D, Haddi K, Hulcr J, Jactel H, Kajimura H, Kamata N, Meurisse N, Li Y, Oliver J B, Ranger C M, Rassati D, Stelinski L L, Sutherland R, Garzia G T, Wright M G, Biondi A. 2021. Recent advances toward the sustainable management of invasive Xylosandrus ambrosia beetles. Journal of Pest Science 94: 615-637.

Gugliuzzo A, Criscione G, Biondi A, Aiello D, Vitale A, Polizzi G, Tropea Garzia G. 2020. Seasonal changes in population structure of the ambrosia beetle Xylosandrus compactus and its associated fungi in a southern Mediterranean environment. PLoS ONE 15(9): e0239011.

Gugliuzzo A, Criscione G, Siscaro G, Russo A, Tropea Garzia G. 2019a. First data on the flight activity and distribution of the ambrosia beetle Xylosandrus compactus (Eichhoff) on carob trees in Sicily. European and Mediterranean Plant Protection Organization Bulletin 49(2): 340-351.

Gugliuzzo A, Criscione G, Tropea Garzia G. 2019b. Unusual behavior of Xylosandrus compactus (Coleoptera: Scolytinae) on carob trees in a Mediterranean environment. Insects 10(3): 82.

Hara A H. 1977. Biology and rearing of the black twig borer, Xylosandrus compactus (Eichhoff) in Hawaii. Master thesis. University of Hawaii, Honolulu.

Hara A H, Beardsley J W Jr. 1979. The biology of the black twig borer, Xylosandrus compactus (Eichhoff), in Hawaii. Proceedings of the Hawaiian Entomological Society 18: 55-70.

Hayato M. 2007. Note on the dieback of Cornus florida caused by Xylosandrus compactus. Bulletin of Forestry and Forest Products Research Institute 6: 59-63.

Hofstetter R W, Dempsey T D, Klepzig K D, Ayres M P. 2007. Temperature-dependent effects on mutualistic, antagonistic, and commensalistic interactions among insects, fungi and mites. Community Ecology 8: 47-56.

Johnson M A, Manoukis N C. 2021. Influence of seasonal and climatic variables on coffee berry borer (Hypothenemus hampei Ferrari) flight activity in Hawaii. PLoS ONE 16(12): e0257861.

Jones V P, Johnson M W. 1996. Management of black twig borer on coffee. GACC Termination Report. 6 pp.

Kagezi G H, Kucel P, Egonyu P J, Nakibuule L, Kobusinge J, Ahumuza G, Matovu R, Nakendo S, Luzinda H, Musoli P C, Kangire A, Chesang B F. 2013. Impact of the black coffee twig borer and farmers’ coping mechanisms in Uganda. African Crop Science Conference Proceedings 11: 285-292.

Kagezi G H, Kucel P, Nakibuule L, Kobusinge J, Ahumuza G, Wagoire.W W. 2016a. Current research status and strategic challenges on the black coffee twig borer, Xylosandrus compactus in Uganda. Proceedings. Second Scientific Conference on African Coffee. The Inter African Coffee Organisation (IACO), Yaounde, 2016.

Kagezi G H, Kucel P, Olango N, Tumuhaise V, Nakibuule L, Kobusinge J, Kabole C, Wagoire W W. 2016b. Current distribution and impact of the Black Coffee Twig Borer (BCTB) and Coffee Wilt Disease (CWD) in Uganda. Study Report Submitted to the Uganda Coffee Development Authority (UCDA). 36 pp.

Kamanyire M. 2000. Sustainability indicators for natural resource management and policy. Working Paper 3. Natural Resource Management and Policy in Uganda. Overview Paper. Economic Policy Research Centre. 58 pp.

Kobusinge J, Gabiri G, Kagezi G H, Sseremba G, Nakitende A, Arinaitwe G, Twesigye C K. 2023. Potential of moisture conservation practices to improve soil properties and nutrient status of Robusta coffee plant. Agronomy 13: 1148.

Marini L, Haack R A, Rabaglia R J, Toffolo E P, Battisti A, Faccoli M. 2011. Exploring associations between international trade and environmental factors with establishment patterns of exotic Scolytinae. Biological Invasions 13: 2275-2288.

Martínez M, Cognato A I, Guachambala M, Urdanigo J P, Boivin T., 2020. Effects of climate and host age on flight activity, infestation percentage, and intensity by Coptoborus ochromactonus (Coleoptera: Curculionidae: Scolytinae) in commercial balsa plantations of Ecuador. Journal of Economic Entomology 113(2): 824-831.

Martínez M, Cognato A I, Guachambala M, Boivin T. 2019. Bark and ambrosia beetle (Coleoptera: Curculionidae: Scolytinae) diversity in natural and plantation forests in Ecuador. Environmental Entomology 48: 603-613.

MDLG 2015, Mukono District Local Government District Development Plan 2015/2016-2019/2020.

Menocal O, Kendra P E, Padilla A, Chagas P C, Chagas E A, Crane J H, Carrillo D. 2022. Influence of canopy cover and meteorological factors on the abundance of bark and ambrosia beetles (Coleoptera: Curculionidae) in avocado orchards affected by laurel wilt. Agronomy 12: 547.

Monterrosa A, Joseph S V, Blaauw B, Hudson W, Acebes-Doria A L. 2022. Ambrosia beetle occurrence and phenology of Xylosandrus spp. (Coleoptera: Curculionidae: Scolytinae) in ornamental nurseries, tree fruit, and pecan orchards in Georgia. Environmental Entomology 51(5): 998-1009.

Mote U, Tambe A. 2000. Seasonal incidence of shot-hole borer on pomegranate. Journal of Maharashtra Agricultural Universities 25(1): 34-36.

NaCORI/ MAAID/ UCDA 2022. A rapid assessment report on the status of pests and diseases in southwestern, eastern, greater Masaka, western and Rwenzori regions - A joint survey undertaken by the National Coffee Research Institute (NaCORI), Ministry of Agriculture, Animal Industry and Fisheries (MAAIF) and Uganda Coffee Development Authority (UCDA). 37 pp.

Ngoan N D, Wilkinson R C, Short D E, Moses C S, Mangold J R. 1976. Biology of an introduced ambrosia beetle, Xylosandrus compactus, in Florida. Ann. Entomol. Soc. Am. 69: 872-876.

Norhisham A R, Abood F, Rita M, Hakeem K R. 2013. Effect of humidity on egg hatchability and reproductive biology of the bamboo borer (Dinoderus minutus Fabricius). SpringerPlus 2(1): 9.

Öhrn P, Långström B, Lindelöw Å, Björklund N. 2014. Seasonal flight patterns of Ips typographusin southern Sweden and thermal sums required for emergence. Agricultural and Forest Entomology 16(2): 147-157.

Öhrn P. 2012. Seasonal flight patterns of the spruce bark beetle (Ips typographus) in Sweden - phenology, voltinism and development. Licentiate Thesis, Department of Ecology, Swedish University of Agricultural Sciences, Sweden. 42pp.

Olango N D, Olal S, Kagezi G, Kucel P, Ekwaru R, Kobusinge J, Arinaitwe G. 2023. Occurrence and damage/severity of coffee pests and diseases in central Uganda. Proceeding. Third NARO-MAK Joint Scientific Conference, Kampala, 2023, pp. 62

Oliver J B, Mannion C M. 2001. Ambrosia beetle (Coleoptera: Scolytidae) species attacking chestnut and captured in ethanol-baited traps in middle Tennessee. Environmental Entomology 30: 909-918.

Qureshi KH, Solangi A W, Lanjar A G, Marri J M, Khuhro S A, Bukero A. 2021. Biological parameters of the bark beetle, Xylosandrus crassiusculus (Motschulsky) under controlled laboratory conditions. Arab Journal of Plant Protection 39(2): 146-151.

Raffa K F, Gregoire J C, Lindgren B S. 2015. Natural history and ecology of bark beetles. In: Vega F E, Hofstetter R W (eds.), Bark beetles: Biology and ecology of native and invasive species. Elsevier Inc., San Diego. pp. 1-28.

Reding M E, Ranger C M, Oliver, J B, Schultz P B. 2013. Monitoring attack and flight activity of Xylosandrus spp. (Coleoptera: Scolytinae Curculionidae:): The influence of temperature on activity. Journal of Economic Entomology 106: 1780-1787.

Reding M E, Ranger C M. 2018. Residue age and attack pressure influence efficacy of insecticide treatments against ambrosia beetles (Coleoptera: Curculionidae). Journal of Economic Entomology, 111(1): 269-276.

Reich R M, Lundquist J E, Acciavatti R E. 2014. Influence of climatic conditions and elevation on the spatial distribution and abundance of Trypodendron ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) in Alaska. Forest Science 60(2): 308-316.

Robertson T R, Bell C W, Zak J C, Tissue D T. 2009. Precipitation timing and magnitude differentially affect aboveground annual net primary productivity in three perennial species in a Chihuahuan Desert grassland. New Phytologist 181: 230-242.

Rojano F, Ibarra-Juarez L A, Powell J, Salazar R, Lira-Noriega A. 2021. Modeling the impact of temperature on the population abundance of the ambrosia beetle Xyleborus affinis (Curculionidae: Scolytinae) under laboratory-reared conditions. Journal of Thermal Biology 103001.

Sanguansub S, Buranapanichpan S, Beaver R, Saowaphak T, Tanaka N, Kamata N. 2020. Influence of seasonality and climate on captures of wood-boring Coleoptera (Bostrichidae and Curculionidae (Scolytinae and Platypodinae) using ethanol-baited traps in a seasonal tropical forest of Northern Thailand. Journal of Forestry Research 25: 223-231.

SAS 2008. SAS/STAT Software: Version 9.2, Cary, NC: SAS Institute Inc.

Six D L, Bentz B J. 2007. Temperature determines symbiont abundance in a multipartite bark beetle fungus ectosymbiosis. Microbial Ecology 54: 112-118.

Six D L. 2012. Ecological and evolutionary determinants of bark beetle - Fungus symbioses. Insects 3(1):339-366.

Speranza S, Bucicni D, Paparatti B. 2009. New observation on biology of European shot-hole borer (Xyleborus dispar (F.)) on hazel in North Latium (Central Italy). Acta Horticulturae 845: 539-542.

Suárez-Hernández H de J, Infante F, Ortiz-Ceballos Á I, Díaz-Fleischer F, López-Ortega M. 2023. Effect of climatic factors on the diversity and abundance of Scolytinae and Platypodinae (Coleoptera: Curculionidae) in a pine-oak forest. AgroProductividad. https://doi.org/10.32854/agrop.v16i3.2466.

Tarno H, Setiawan Y, Wang J, Ito S, Mario M B, Kurahman T. Suraningwulan M, Amaliah A A, Sari, N I, Achmad M A. 2022. Partitioning of ambrosia beetle diversity on teak plantations in Java, Sumbawa and Sulawesi Islands. Forests13: 2111.

Tochen S, Woltz J M, Dalton D T, Lee J C, Wiman N G, Walton V M. 2016. Humidity affects populations of Drosophila suzukii (Diptera: Drosophilidae) in blueberry. Journal of Applied Entomology 140(1-2): 47-57.

Umeda C, Paine T. 2019. Temperature can limit the invasion range of the ambrosia beetle Euwallacea nr. fornicatus. Agricultural and Forest Entomology 21: 1-7.

Walgama R S, Zalucki M P. 2007. Temperature-dependent development of Xyleborus fornicatus (Coleoptera: Scolytidae), the shot-hole borer of tea in Sri Lanka: Implications for distribution and abundance. Insect Science, 14(4), 301-308.

Werle C. 2016. An integrated approach to ambrosia beetle management in ornamental tree nurseries: biology of and control measures for exotic Xyleborina. PhD thesis, Louisiana State University, USA, 86pp.

Wood S L. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Nat. Memoirs No. 6. Brigham Young University, Provo, UT. 1359 pp.

Wu Z, Dijkstra P, Koch G W, Penuelas J, Hungate B A. 2011. Responses of terrestrial ecosystems to temperature and precipitation change: a meat-analysis of experimental manipulation. Global Change Biology 17: 927-942.

Yang Q-F, Wang H, Li Q, Wang H-J, Jiang C-X. 2010. Influences of temperature on development and reproduction of the experimental population of the ambrosia beetle Xylosandrus germanus (Coleoptera: Scolytidae). 53(12): 1382-1389.

Zavaleta E S, Shaw M R, Chiariello N R, Thomas B D, Cleland E E, Field C B, Mooney H A. 2003. Grassland responses to three years of elevated temperature, CO2, precipitation and N deposition. Ecological Monographs 73: 585-604.