Acaricide Resistance in Field-Collected Two-Spotted Spider Mite Tetranychus urticae Koch

Authors

  • Naveena K. Department of Agricultural Entomology, Agricultural College and Research Institute (AC & RI), Tamil Nadu Agricultural University (TNAU), Madurai 625104, Tamil Nadu
  • Shanthi M. Department of Agricultural Entomology, Agricultural College and Research Institute (AC & RI), Tamil Nadu Agricultural University (TNAU), Madurai 625104, Tamil Nadu
  • Chinniah C. Department of Agricultural Entomology, Agricultural College and Research Institute (AC & RI), Tamil Nadu Agricultural University (TNAU), Madurai 625104, Tamil Nadu
  • Jayaraj J. Department of Agricultural Entomology, Agricultural College and Research Institute (AC & RI), Tamil Nadu Agricultural University (TNAU), Madurai 625104, Tamil Nadu
  • Ramasubramanian T. ICAR - Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu
  • Mini M. L. Department of Biotechnology Agricultural College and Research Institute (AC & RI), Tamil Nadu Agricultural University (TNAU), Madurai 625104, Tamil Nadu
  • Renuka R. Department of Biotechnology Agricultural College and Research Institute (AC & RI), Tamil Nadu Agricultural University (TNAU), Madurai 625104, Tamil Nadu

DOI:

https://doi.org/10.55446/IJE.2022.179

Keywords:

Fenazaquin, propargite, spiromesifen, buprofezin, fenpropathrin, diafenthiuron, chlorfenapyr, LC50, RR, GST, MFO, CarE, resistance, vegetables

Abstract

Two spotted spider mite Tetranychus urticae Koch is an economically serious pest posing threat to major vegetable crops. Roving survey in and around Coimbatore region revealed that farmers do not target mites with acaricides instead they use higher dose of insecticides at frequent intervals which results in development of resistance. The bioassay results revealed that fenpropathrin (2.07 to 6.86-folds) and fenazaquin (2.74 to 7.13-folds) exhibit higher susceptibility, whereas diafenthiuron (5.35 to 12.25-folds) revealed a low to moderate level of resistance. The propargite (43.80 to 60.63-folds) and chlorfenapyr (61.01 to 75.10-folds) exhibited high resistance, followed by spiromesifen (222.28 to 300.26-folds) and buprofezin (382.60 to 417.87-folds), with extremely high level of resistance. The higher specific activity of GST (4.54-folds), MFO (10.06-folds) and CarE (15.06-folds) in Puthupalayam population suggested the role of biochemical resistance. A significant positive correlation was observed between diafenthiuron and CarE activity (r = 0.981*), fenpropathrin and MFO activity (r = 0.964*).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-06-01

How to Cite

K., N. ., M., S., C., C. ., J., J., T., R., M. L., M., & R., R. (2023). Acaricide Resistance in Field-Collected Two-Spotted Spider Mite <i>Tetranychus urticae</i> Koch. Indian Journal of Entomology, 85(2), 354–358. https://doi.org/10.55446/IJE.2022.179

Issue

Section

Research Articles

References

Amsalingam R, Gajjeraman P, Sam N, Rahman V J, Azariah B. 2016. Mechanism of fenpropathrin resistance in red spider mite, Oligonychus coffeae (Acarina: Tetranychidae) infesting tea (Camellia sinensis L. (O. Kuntze)). Applied Biochemistry and Biotechnology 181: 548-561.

Anushree B, Haseena B, Berin P, Shylaja M R. 2019. Resistance to acaricides in Tetranychus truncates ehara on vegetables. Indian Journal of Entomology 81(1): 130-133.

Bose S C. 2019. Exploration of neonicotinoids resistance among cotton aphid, Aphis gossypii and its amelioration. Ph.D., thesis, Tamil Nadu Agricultural University. pp. 38-40.

Hany H M, Brar B M, Paramjit K. 2020. Acaricide resistance in field collected two spotted spider mite, Tetranychus urticae from Okra in Punjab. Indian Journal of Ecology 47(2): 590-593.

He X. 2003. A continuous spectrophotometric assay for the determination of diamondback moth esterase activity. Archives of Insect Biochemistry and Physiology 54: 68-76.

IRAC. 2009. Susceptibility test method series, Method No. 004. http://www.irac-online.org.

Kim Y-J, Lee S-H, Lee S-W, Ahn Y-J. 2004. Fenpyroximate resistance in Tetranychus urticae (Acari: Tetranychidae): cross-resistance and biochemical resistance mechanisms. Pest Management Science 60: 1001-1006.

Lowry O H, Rosebrough N J, Lewis Farr A, Randall R J. 1951. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193(1): 256-275.

Lu W, Wang M, Xu Z, Shen G, Wei P, Li M, Reid W, He L. 2016. Adaptation of acaricide stress facilitates Tetranychus urticae expanding against Tetranychus cinnabarinus in China. Ecology and Evolution 7: 1233-1249.

Mohin M. 2020. Studies on acaricidal resistance in two-spotted spider mite, Tetranychus urticae Koch (Acarina: Tetranychidae) infesting tomato. PG thesis. University of Agricultural and Horticultural Sciences, Shivamogga. 97 p.

Mota-Sanchez D, Wise J C. 2021. The Arthropod Pesticide Resistance Database. Michigan State University. http://www.pesticide resistance.org.

Pan D, Dou W, Yuan G R, Zhou Q H, Wang J J. 2020. Monitoring the resistance of the citrus red mite (Acari: Tetranychidae) to four acaricides in different citrus orchards in China. Journal of Economic Entomology 113(2): 918-923.

Regupathy A, Dhamu K P. 2001. Statistics work book for insecticide toxicology. Second Edition - Softech publishers, Coimbatore. 206 pp.

Riaz A, Tariq M, Gulzar A, Asad M J, Mahmood R T. 2014. Effect of new chemistry insecticides on the esterase activity of Brevicoryne brassicaea (Homoptera: Aphididae). Pakistan Entomologist 36(2): 111-114.

Roy S, Prasad A K, Handique G, Deka B. 2018. Susceptibility to acaricides and detoxifying enzyme activities in the red spider mite, Oligonychus coffeae Nietner (Acari: Tetranychidae). Acarologia 58(3): 647-654.

Sharma R K. 2017. Acaricide resistance and its biochemical and molecular bases in two-spotted spider mite, Tetranychus urticae Koch. Ph D thesis. Punjab Agricultural University, Ludhiana. pp. 39-42.

Shukla A, Radadia G G, Hadiya G D. 2017. Estimation of loss due to two spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae) infesting brinjal. International Journal of Current Microbiology and Applied Sciences 6(9): 2145-2150.

Syed Najeer E, Khadri N, Srinivasa N. 2018. Resistance of two-spotted spider mite, Tetranychus urticae Koch to major acaricides and its consequences on biological characteristics of mites. Mysore Journal of Agricultural Sciences 52(2): 179-185.

Titiksha R, Sood A K. 2019. Determining resistance level to acaricides in field populations of two spotted spider mite, Tetranychus urticae in Himachal Pradesh. Himachal Journal of Agricultural Research 45(1&2): 62-65.

Titiksha R. 2019. Monitoring resistance to acaricides in Tetranychus urticae (Koch) under protected cultivation. PG Thesis. Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh. 91 pp.

Van Leeuwen T V, Vontas J, Tsagkarahou A. 2009. Mechanisms of acaricide resistance in the two-spotted spider mite, Tetranychus urticae. Biorational control of arthropod pests: application and resistance management Ishaaya I and Horowitz R (eds.) Springer. pp. 351-370.

Wu S F, Zeng B, Zheng C, Mu X C, Zhang Y, Hu J, Zhang S, Gao C F, Shen J L. 2018. The evolution of insecticide resistance in the brown planthopper (Nilaparvata lugens) of China in the period 2012-2016. Scientific Reports 8: 4586.

Xin-Ju G, Hui-Min S. 2011. Resistance selection with fenpropathrin and the change of detoxification enzyme activities in Tetranychus urticae Koch (Acari: Tetranychidae). Acta Entomologica Sinica 54(1): 64-69.

Xu D, He Y, Zhang Y, Xie W, Wu Q, Wang S. 2018. Status of pesticide resistance and associated mutations in the two-spotted spider mite, Tetranychus urticae in China. Pesticide Biochemistry and Physiology 150: 89-96.

Most read articles by the same author(s)