Evaluation and Identification of Novel Insecticidal Toxin Genes From Bacillus Thuringiensis (Berliner) Isolates

Authors

  • Mahadev Naik Department of Agricultural Entomology, College of Agriculture, Raichur 584104, Karnataka
  • Basavaraj Kalmath Department of Agricultural Entomologyy, College of Agriculture, Raichur 584104, Karnataka
  • Lakshmikanth Department of Biochemistry, College of Agriculture, Raichur 584104, Karnataka
  • Saroja Rao Department of Biochemistry, College of Agriculture, Raichur 584104, Karnataka
  • Syed Dastager CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra
  • Arunkumar Hosamani AICRP on Biocontrol, MARS, Raichur 584104, Karnataka
  • Basavaraj Kadann avar Department of Agricultural Entomology, College of Agriculture, Gangavathi 583227, Karnataka
  • Harischandra Naik Pesticide Residue and Food Quality Analysis Laboratory, UAS, Raichur 584104, Karnataka, India

DOI:

https://doi.org/10.55446/IJE.2024.1761

Keywords:

Vegetative insecticidal protein, cytolytic protein, entomopathogenic bacterial isolates, Spodoptera litura, cellular extract, bioassay, Vip 1 and 2, surface contamination method, diet incorporation method, insecticidal proteins, LC50

Abstract

The present study evaluated fifteen Bacillus thuringiensis (Berliner) isolates against second instar larvae of tobacco leaf eating caterpiller Spodoptera litura (F) and Vip genes were identified in the effective isolates. Four NCIM isolates (5111, 5112, 5116 and 5117) were found promising, and their LC50 ranged from 2.5x105 to 3.33x105 ppm and 2.20x105 to 2.85x105 ppm in diet incorporation and surface contamination methods, respectively. The NCIM-5111 isolate exhibited the lowest LC50 of 2.5x105 ppm in diet incorporation and 2.2x105 ppm in the surface contamination method. Surface contamination method revealed more mortality of 6.66 to 10.00% across the NCIM isolates. All the isolates were further used for identification of insecticidal toxin (Vip, Cyt) genes, and it was observed that four NCIM isolates harbour the Vip3Aa1 gene and one viz., NCIM-5112 isolate carries the Vip1/ Vip2 gene, which has distinct motifs from the Vip toxins that are currently in use.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-05-08

How to Cite

Naik , M., Kalmath, B., Lakshmikanth, Rao, S., Dastager, S., Hosamani, A., … Naik, H. (2024). Evaluation and Identification of Novel Insecticidal Toxin Genes From <i>Bacillus Thuringiensis</i> (Berliner) Isolates. Indian Journal of Entomology, 1–8. https://doi.org/10.55446/IJE.2024.1761

Issue

Section

Research Articles

References

Bravo A, Likitvivatanavong S, Gill S S, Soberon M. 2011. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect biochemistry and molecular biology 41(7): 423-431. Chakroun M, Banyuls, N, Bel Y, Escriche B, Ferre J. 2016. Bacterial vegetative insecticidal proteins (Vip) from entomopathogenic bacteria. Microbiology and Molecular Biology Reviews 80(2): 329-350.

Crickmore N, Baum J, Bravo A, Lereclus D, Narva K, Sampson K, Schnepf E, Sun M, Zeigler D R. 2022. “Bacillus thuringiensis toxin nomenclature”. http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/.

Donovan W P, Engleman J T, Donovan J C, Baum J A, Bunkers G J, Chi D J, Clinton W P, English L, Heck G R, Ilagan O M, Krasomil-Osterfeld K C, Pitkin J W, Roberts J K, Walters M R. 2006. Discovery and characterization of Sip1A: a novel secreted protein from Bacillus thuringiensis with activity against coleopteran larvae. Applied Microbiology and Biotechnology 72: 713-719.

Fang J, Xu X, Wang P, Zhao J Z, Shelton A M, Cheng J, Feng M G, Shen Z. 2007. Characterization of chimeric Bacillus thuringiensis Vip3 toxins. Applied Environmental Microbiology 73(3): 956-961.

Gouffon C V, Van Vliet A, Van Rie J, Jansens S, Jurat-Fuentes J L. 2011. Binding sites for Bacillus thuringiensis Cry2Ae toxin on heliothine brush border membrane vesicles are not shared with Cry1A, Cry1F, or Vip3A toxin. Applied Environmental Microbiology 77: 3182-3188.

Guney E, Adıguzel A, Demirbag Z, Sezen K. 2019. Bacillus thuringiensis kurstaki strains produce vegetative insecticidal proteins (Vip3) with high potential. Egyptian Journal of Biological Pest control 29(1):1-6.

Gupta M, Kumar H, Kaur S.2021. Vegetative insecticidal protein (Vip): A potential contender from Bacillus thuringiensis for efficient management of various detrimental agricultural pests. Frontiers in Microbiology 12(2): 659-736.

Jain D, Sunda S D, Sanadhya S, Nath D J, Khandelwal S K. 2017. Molecular characterization and PCR-based screening of Cry genes from Bacillus thuringiensis strains. Biotechnology 7(1): 1-8.

Jouzani G S,Valijanian E, Sharafi R. 2017. Bacillus thuringiensis: a successful insecticide with new environmental features and tidings. Applied Microbiology and Biotechnology 101(7): 2691-2711.

Li C, Xu N, Huang X, Wang W, Cheng J, Wu K, Shen Z. 2007. Bacillus thuringiensis Vip3 mutantproteins: Insecticidal activity and trypsin sensitivity. Biocontrol Science 17(7): 699-708.

Lone S A, Yadav R, Malik A, Padaria J C. 2016. Molecular and insecticidal characterization of Vip3A protein producing Bacillus thuringiensis strains toxic against Helicoverpa armigera (Lepidoptera: Noctuidae). Canadian Journal Microbiology 62(2): 179-190.

Lopez P, Soberon L, Bravo M A. 2013. Bacillus thuringiensis insecticidal three domain Cry toxins: mode of action insect resistance and consequences for crop protection. FEMS Microbiology Review 37(2) : 3-22.

Martinez H P, Rodriguez H C S, Rie R J, Escriche B, Ferre J. 2013. Insecticidal activity of Vip3Aa,Vip3Ad,Vip3Ae and Vip3Af from Bacillus thuringiensis against lepidopteran corn pests. Journal of Invertebrate Pathology 113(1): 78-81.

Milne R, Liu Y, Gauthier D, Frankenhuyzen K V. 2008. Purification of Vip3Aa from Bacillus thuringiensis HD-1 and its contribution to toxicity of HD-1 to spruce budworm (Choristoneura fumiferana) and gypsy moth (Lymantria dispar) (Lepidoptera). Journal of Invertebrate Pathology 99(2): 166-172.

Mesrati A L, Boukedi H, Dammak-Karray M, Sellami-Boudawara T, Jaoua S, Tounsi S. 2011. Study of the Bacillus thuringiensis Vip3Aa16 histopathological effects and determination of its putative binding proteins in the midgut of Spodoptera littoralis. Journal of Invertebrate Pathology 106: 250-254.

Palma L, De Escudero I R, Maeztu M, Caballero P, Munoz D. 2013. Screening of Vip genes from a Spanish Bacillus thuringiensis collection and characterization of two Vip3 proteins highly toxic to five lepidopteran crop pests. Biological Control 66(3): 141-149.

Rabha M, Sharma S, Acharjee S, Sarmah B K. 2017. Isolation and characterization of Bacillus thuringiensis strains native to Assam soil of North East India. Biotechology 7(5): 1-9.

Rodriguez H C S, Boets A, Rie V J, Ferre J. 2009. Screening and identification of Vip genes in Bacillus thuringiensis strains. Journal of Applied Microbiology 107(1): 219-225.

Rajamanickam C, Kannan R, Somannan J. 2015. Combined effect of Bacillus thuringiensis and Bacillus subtilis against Helicoverpa armigera. International Journal of Current Microbiology and Applied Sciences 4(7): 127-141.

Sahin B, Cebolla G J, Gunes H, Ferre J. 2018. Characterization of Bacillus thuringiensis isolates by their insecticidal activity and their production of Cry and Vip3 proteins. Plos one 13(11): e0206813.

Sambrook J, Russell D W. 2001. Molecular cloning: a laboratory manual. cold spring harbour laboratory. Cold Spring Harb. Mol. New York. Sattar S, Maiti M K. 2011. Molecular characterization of a novel vegetative insecticidal protein from Bacillus thuringiensis effective against sap-sucking insect pest. Journal of Microbiology and Biotechnology 21(9): 937-946.

Sattar S, Biswas P K, Hossain M A, Maiti M K, Sen S K Basu A. 2008. Search for vegetative insecticidal proteins (Vips) from local isolates of Bacillus thuringiensis effective against lepidopteran and homopteran insect pests. Journal of Biopesticide 1(2) : 216-222.

Shingote P R, Moharil M P, Dhumale D R, Jadhav P V, Satpute N S, Dudhare M S. 2013. Screening of Vip1/Vip2 binary toxin gene and its isolation and cloning from local Bacillus thuringiensis isolates. Science Asia 39: 620-624.

Song F, Lin Y, Chen C, Shao E, Guan X, Huang Z. 2016. Insecticidal activity and histopathological effects of Vip3Aa protein from Bacillus thuringiensis on Spodoptera litura. Journal of Microbiology and Biotechnology 26(10): 1774-1780.

Syed T, Askari M, Meng Z, Li Y, Abid M A, Wei Y, Guo S, Liang C, Zhang R. 2020. Current insights on vegetative insecticidal proteins (Vip) as next generation pest killers. Toxins 12(8): 522.

Vazquez G M C, Sanchez V R A, Ruiz R N E, Lima C A. 2021. Importance of Cry Proteins in Biotechnology: Initially a Bioinsecticide, Now a Vaccine Adjuvant. Life 11(10): 999.

Vimaladevi P S, Vineela V. 2015. Suspension concentrate formulation of Bacillus thuringiensis var. kurstaki for effective management of Helicoverpa armigera on sunflower (Helianthus annuus). Biocontrol Science Technology 25(3): 329-336.

Most read articles by the same author(s)