Mate Guarding Behaviour in Response to Temperature in Parthenium Beetle Zygogramma bicolorata Pallister

Authors

  • Lankesh Yashwant Bhaisare Behavioral and Molecular Ecology and Biocontrol Research Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak 484887, Madhya Pradesh
  • Desh Deepak Chaudhary Behavioral and Molecular Ecology and Biocontrol Research Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak 484887, Madhya Pradesh

DOI:

https://doi.org/10.55446/IJE.2023.1511

Keywords:

Thermal regimes, reproductive behavior, copulatory parameters, TCM, LP, MGD, reproductive attributes, fecundity, percent eggs viability, Z. bicolorata

Abstract

Insects are ectothermic organisms in which most of the biochemical, physiological and behavioral processes may depend on thermal conditions of surrounding environments. Here, we anticipated that the copulatory parameters may also depends on different rearing conditions. So, it was hypothesized that developmental thermal conditions might play crucial role in modulation of mate guarding as well as reproductive outputs of Zygogramma bicolorata Pallister (Coleoptera: Chrysomelidae). In result, deaths of larval instars and pupa were observed along with underdeveloped adults at extreme developmental thermal conditions (15°C and 35°C). On the other hand, maximum time to commencement of mating (TCM) was observed at 20°C and minimum at 25°C. But latent period (LP) and mate guarding duration (MGD) were maximum at 30°C and minimum at 20°C and 25°C respectively. Further, result showed increase level of reproductive output at 20°C. So, it can be concluded that developmental temperature significantly influenced mate guarding and reproductive attributes.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-08-14

How to Cite

Bhaisare, L. Y., & Chaudhary, D. D. (2023). Mate Guarding Behaviour in Response to Temperature in Parthenium Beetle <i>Zygogramma bicolorata</i> Pallister. Indian Journal of Entomology, 1–6. https://doi.org/10.55446/IJE.2023.1511

Issue

Section

Research Articles

References

Afaq U, Omkar 2017. Polygyny influences the fitness of parthenium beetle, Zygogramma bicolorata Pallister. Journal of Asia-Pacific Entomology 20: 215-219.

Aksit T, Cakmak I, Ozer G. 2007. Effect of temperature and photoperiod on development and fecundity of an acarophagous ladybird beetle, Stethorus gilvifrons. Phytoparasitica 35: 357-366.

Alcock J. 1994. Postinsemination associations between males and females in insects: the mate guarding hypothesis. Annual Review of Entomology 39: 1-21.

Amin M R, Bussière L F, Goulson D. 2012. Effects of male age and size on mating success in the bumblebee Bombus terrestris. Journal of Insect Behavior 25: 362-374.

Angilletta M J. 2009. Thermal Adaptation: A theoretical and empirical synthesis. Oxford University Press, Oxford. 302 pp.

Bali K, Gupta R K, Pervez A, Guroo M A, Gupta A, Gani M. 2022. Variation in reproductive attributes and diapause behaviour among six populations of Zygogramma bicolorata Pallister. International Journal of Tropical Insect Science 42: 755-765.

Bhaisare L Y, Paraste S, Kaushik S, Chaudhary D D, Al-Misned F, Mahboob S, Al-Ghanim K, Ansari M J. 2021. Reproductive success in Zygogramma bicolorata: A role of post-insemination association of male and female. Saudi Journal of Biological Sciences 28: 1539-1543.

Bhusal D R, Ghimire K C, Patel P, Bista M, Upadhyay R, Kumar B. 2020. Temperature and altitude modulate feeding attributes of Mexican beetle, Zygogramma bicolorata Pallister on Parthenium hysterophorus. Journal of Thermal Biology 89: 102540.

Blanckenhorn W U, Henseler C. 2005. Temperature-dependent ovariole and testis maturation in the yellow dung fly. Entomologia Experimentalis et Applicata 116: 159-165.

Carroll S P. 1991. The adaptive significance of mate guarding in the soapberry bug, Jadera haematoloma (Hemiptera: Rhopalidae). Journal of Insect Behavior 4: 509-530.

Chaudhary D D, Mishra G, Omkar 2015. Prolonged matings in a ladybird, Menochilus sexmaculatus: a mate guarding mechanism? Journal of Asia-Pacific Entomology 18: 453-458.

Cothran R D. 2004. Precopulatory mate guarding affects predation risk in two freshwater amphipod species. AnimalBehavior 68: 1133-1138.

Cowie B W, Strathie, L W, Goodall J M, Venter N, Witkowski E T F, Byrne M J. 2019. Does host plant quality constrain the performance of the parthenium beetle Zygogramma bicolorata? Biological Control 139: 104078.

Cowie B W, Witkowski E T F, Byrne M J, Strathie L W, Goodall J M, Venter N. 2018. Physiological response of Parthenium hysterophorus to defoliation by the leaf-feeding beetle Zygogramma bicolorata. Biological Control 117: 35-42.

Dallai R, Gottardo M, Mercati D, Machida R, Mashimo Y, Matsumura Y, Beutel R G. 2013. Divergent mating patterns and a unique mode of external sperm transfer in Zoraptera: An enigmatic group of pterygote insects. Naturwissenschaften 100: 581-594.

Darwin C. 1859. On the origin of species. Harvard University Press, Cambridge, MA, USA.

Elgar M A, Schneider J M, Herberstein M E. 2000. Female control of paternity in the sexually cannibalistic spider Argiope keyserlingi. Proceedings of Royal Society B 267: 2439-2443.

Ferveur J F, Cobb M, Boukella H, Jallon J M. 1996. World-wide variation in Drosophila melanogaster sex pheromone. Behavioral effects, genetics bases and potential evolutionary consequences. Genetica 97: 73-80.

Fields P A. 2001. Review: Protein function at thermal extremes: balancing stability and flexibility. Comparative Biochemistry and Physiology 129: 417-431.

García-Roa R, Chirinos V, Carazo P. 2019. The ecology of sexual conflict: temperature variation in the social environment can drastically modulate male harm to females. Functional Ecology 33: 681-692.

García-Roa R, Garcia-Gonzalez F, Noble D W A, Carazo P. 2020. Temperature as a modulator of sexual selection. Biological Reviews 95: 1607-1629.

Gilles J, David J F, Duvallet G. 2005. Effects of temperature on the rate of increase of Stomoxys calcitrans and Stomoxys niger (Dipt.: Muscidae) from La Reunion Island. Journal of Medical Entomology 42: 959-965.

Hasan F, Al-Ghanim K A, Al-Misned F, Mahboob S. 2020. Does Zygogramma bicolorata Pallister really affects the growth, density and reproductive performance of Parthenium hysterophorus L? Saudi Journal of Biological Sciences 27: 1871-1878.

Hercus M J, Loeschcke V, Rattan S I. 2003. Lifespan extension of Drosophila melanogaster through hormesis by repeated mild heat stress. Biogerontology 4: 149-156.

Horton D R, Lewis T M, Hinojosa T. 2002. Copulation duration in three species of Anthocoris (Heteroptera: Anthocoridae) at different temperatures and effects on insemination and ovarian development. The Pan-Pacific Entomology 78: 43-55.

Huang L-H, Chen B, Kang L. 2007. Impact of mild temperature hardening on thermotolerance, fecundity, and Hsp gene expression in Liriomyza huidobrensis. Journal of Insect Physiology 53: 1199-1205.

Irwin J T, Lee, R E. 2000. Mild winter temperatures reduce survival and potential fecundity of the goldenrod gall fly, Eurosta solidaginis (Diptera: Tephritidae). Journal of Insect Physiology 46: 655-661.

Katsuki M, Miyatake T. 2009. Effects of temperature on mating duration, sperm transfer and remating frequency in Callosobruchus chinensis. Journal of Insect Physiology 55: 113-116.

Keena M A. 2006. Effects of temperature on Anoplophora glabripennis (Coleoptera: Cerambycidae) adult survival, reproduction, and egg hatch. Environmental Entomology 35: 912-921.

Kikuchi Y. 2009. Endosymbiotic Bacteria in insects: Their diversity and culturability. Microbes and Environments 24: 195-204.

Kostal V, Vambera J, Bastl J. 2004. On the nature of pre-freeze mortality in insects: water balance, ion homeostasis and energy charge in the adults of Pyrrhocoris apterus. Journal of Experimental Biology 207: 1509-1521.

Leith N T, Macchiano A, Moore M P, Fowler-Finn K D. 2021. Temperature impacts all behavioral interactions during insect and arachnid reproduction. Current Opinion in Insect Science 45: 106-114.

Malviya P, Dwivedi A K. 2015. Evaluation of water quality of Narmada-river with reference to physico-chemical parameters. International Journal of Engineering, Science and Technology 4: 170-175.

Mbata G N. 1986. Combined effect of temperature and relative humidity on mating activities and commencement of oviposition in Plodia interpunctella (Hubner) (Lepidoptera: Phycitidae). International Journal of Tropical Insect Science 7: 623-628.

Omkar, Afaq U. 2011. Food consumption, utilization and ecological efficiency of parthenium beetle, Zygogramma bicolorata Pallister (Coleoptera: Chrysomelidae). Journal of Asia Pacific Entomology 14: 393-397.

Overgaard J, Malmendal A, Sørensen J G, Bundy J G, Loeschcke V, Nielsen N Chr. Holmstrup M. 2007. Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster. Journal of Insect Physiology 53: 1218-1232.

Parker G A. 1984. Sperm competition and the evolution of animal mating strategies. Smith R L, (ed.). Sperm competition and the evolution of animal mating systems. San Diego (CA). Academic Press. pp. 2-60.

Parsons P A, Kaul D. 1966. Mating speed and duration of copulation in Drosophila pseudoobscura. Heredity 21: 219-225.

Patel P, Kumar B, Upadhyay R, Bhusal D R, Kumar D. 2020. Semiochemical tracks of predaceous Coccinellidae (Coleoptera) modulate feeding attributes and assimilation of nutrients in Zygogramma bicolorata (Coleoptera: Chrysomelidae). Canadian Entomologist 152: 330-341.

Ponsonby D J, Copland M J W. 1998 Environmental influences on fecundity, egg viability and egg cannibalism in the scale insect predator, Chilocorus nigritus. Biocontrol 43: 39-52.

Ren S X, Stansly P A, Liu T X. 2002. Life history of whitefly predator Nephaspis oculatus (Coleoptera: Coccinellidae) at six constant temperature. Biological Control 23: 262-268.

Richard G, Le Trionnaire G, Danchin E, Sentis A. 2019. Epigenetics and insect polyphenism: Mechanisms and climate change impacts. Current Opinion in Insect Science 35: 138-145.

Rowe L. 1992. Convenience polyandry in a water strider: Foraging conflicts and female control of copulation frequency and guarding duration. Animal Behaviour 44: 189-202.

Simmons L W. 2001. Sperm competition and its evolutionary consequences in the insects. Princeton University Press, Princeton, New Jersey.

Sower L L, Shorey H H, Gaston K L. 1971. Sex pheromones of noctuid moths xxv. Effect of temperature and photo-period on circadian rhythms of sex pheromones release by females of Tricloplusia ni. Annals of Entomological Society of America 64: 488-492.

Spieth H T, Ringo J M. 1983. Mating behaviour and sexual isolation in Drosophila. Genetics and biology of Drosophila. (Ashburner M, Carson H L and Thompson Jr J N eds.) Academic Press, London. pp. 223-284.

Suzaki Y, Kodera S, Fujiwara H, Sasaki R, Okada K, Katsuki M. 2018. Temperature variations affect postcopulatory but not precopulatory sexual selection in the cigarette beetle. Animal Behaviour 144: 115-123.

Vahed K, Parker D J, Gilbert J D. 2011. Larger testes are associated with a higher level of polyandry, but a smaller ejaculate volume, across bush cricket species (Tettigoniidae). Biology Letters 7: 261-264.

Wada S, Tanaka K, Goshima S. 1999. Precopulatory mate guarding in the hermit crab Pagurusmid dendorffii (Brandt) (Decapoda: Paguridae): effects of population parameters on male guarding duration. Journal of Experimental Marine Biology and Ecology 239: 289-298.

Williams J B, Shorthouse J D, Lee R E. 2003. Deleterious effects of mild simulated overwintering temperatures on survival and potential fecundity of rose-galling Diplolepis wasps (Hymenoptera: Cynipidae). Journal of Experimental Zoology 298: 23-31.

Zhang B, Leonard S P, Li Y, Moran N A. 2019. Obligate bacterial endosymbionts limit thermal tolerance of insect host species. Proceedings of National Academy of Sciences 116: 24712-24718.

Zhao Z, Cao J, Niu C, Bao M, Xu J, Huo D, Liao S, Liu W, Speakman J R. 2022. Body temperature is a more important modulator of lifespan than metabolic rate in two small mammals. Nature Metabolism 4: 320-326.