Protocol for Temperature Toxicity Investigation on Whitefly Bemisia tabaci (Gennadius)

Authors

  • Nikhil R M Division of Entomology, ICAR- Indian Agricultural Research Institute, New Delhi 110012
  • Anil Kumar S T Division of Entomology, ICAR- Indian Agricultural Research Institute, New Delhi 110012
  • Subramanian S Division of Entomology, ICAR- Indian Agricultural Research Institute, New Delhi 110012
  • Mahapatro G K Division of Entomology, ICAR- Indian Agricultural Research Institute, New Delhi 110012

DOI:

https://doi.org/10.55446/IJE.2023.1355

Keywords:

Agar cube method, Insecticide Resistance Action committee (IRAC), leaf-dip bioassay, temperature toxicity studies, tomato

Abstract

A cost-effective laboratory protocol was perfected for investigating temperature toxicity against whitefly Bemisia tabaci (Genn.) on tomato. Understanding temperature toxicity relationship will aid in strategization of pest management. The experiments conducted to develop the current protocol used B. tabaci Asia II-1 as test insect. Essentially this protocol consist of three steps which are: (1) Temperature incubation of test insects: includes three hour starvation period and temperature treatment of B. tabaci; (2) Preparatory steps of leaf-dip bioassay: suggests use of agar cube method (reduces agar usage by 70%) to maintain green and turgid test leaves during post-exposure period of bioassay; (3) Release of temperature treated insects and mortality counting: test insect release, securing petri plates, recording observations, etc. all are deliberated in detail. This protocol facilitates economical, convenient and easy-to-handle experimentation to study temperature toxicity relationship in B. tabaci.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-10-03

How to Cite

R M, N., S T, A. K., S, S., & G K, M. (2023). Protocol for Temperature Toxicity Investigation on Whitefly <i>Bemisia tabaci</i> (Gennadius). Indian Journal of Entomology, 1–5. https://doi.org/10.55446/IJE.2023.1355

Issue

Section

Research Articles

References

Brown J K. 1994. The status of Bemisia tabaci (Genn.) as a pest and vector in world agro ecosystems. FAO Plant Protection Bulletin 42: 3-32.

CIBRC (Central Insecticides Board and Registration Committee). 2023. MUP: Major uses of pesticides. Ministry of Agriculture & Farmers Welfare, Government of India; http://ppqs.gov.in/divisions/cib-rc/major-uses-of-pesticides

Cui X, Wan F, Xie M, Liu T. 2008. Effects of heat shock on survival and reproduction of two whitefly species, Trialeurodes vaporariorum and Bemisia tabaci biotype B. Journal of Insect Science 8(1): 1-10.

Elbert A, Nauen R. 2000. Resistance of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides in southern Spain with special reference to neonicotinoids. Pest Management Science 56(1): 60-64.

Ellango R, Singh S T, Rana V S, Gayatri Priya N, Raina H, Chaubey R, Naveen N C, Mahmood R, Ramamurthy V V, Asokan R, Rajagopal R. 2015. Distribution of Bemisia tabaci genetic groups in India. Environmental Entomology 44(4): 1258-1264.

Guo L, Su M, Liang P, Li S, Chu D. 2018. Effects of high temperature on insecticide tolerance in whitefly Bemisia tabaci (Gennadius) Q biotype. Pesticide Biochemistry and Physiology 150: 97-104.

Horowitz A R, Ghanim M, Roditakis E, Nauen R, Ishaaya I. 2020. Insecticide resistance and its management in Bemisia tabaci species. Journal of Pest Science 93: 893-910.

IRAC (Insecticide Resistance Action Committee). 2016. IRAC susceptibility test method 015. IRAC. https://irac-online.org/ methods/trialeurodes-vaporariorum-bemisia-tabaci-adult/

Kelageri S S, Mahapatro G K, Subramanian S, Srivastava C, Rajna S. 2022. Relative susceptibility of life stages of cotton whitefly Bemisia tabaci (Genn.) to pyriproxyfen. Indian Journal of Entomology e21188: 1-5. DoI.: 10.55446/IJE.2021.370

Khan H A A. 2021. Posttreatment temperature influences toxicity of insect growth regulators in Musca domestica. Parasitology Research 120(2): 435-441.

Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111-120.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35(6): 1547-1549.

Li Y, Dou Y N, An J, Tu X, Lv H, Pan W, Dang Z, Gao Z. 2020. Temperature-dependent variations in toxicity of diamide insecticides against three lepidopteran insects. Ecotoxicology 29: 607-612.

Li Y, Mbata G N, Punnuri S, Simmons A M, Shapiro-Ilan D I. 2021. Bemisia tabaci on vegetables in the southern United States: incidence, impact, and management. Insects 12(3): 198.

Mahadav A, Kontsedalov S, Czosnek H, Ghanim M. 2009. Thermotolerance and gene expression following heat stress in the whitefly Bemisia tabaci B and Q biotypes. Insect Biochemistry and Molecular Biology 39(10): 668-676.

Nageshkumar T, Anantachar M, Veerangouda M, Prakash K V, Nadagouda S. 2021. Comparative evaluation of some sprayers in control of leaf hoppers and aphids of cotton crop. Journal of Entomological Research 45: 971-977.

Naveen N C, Chaubey R, Kumar D, Rebijith K B, Rajagopal R, Subrahmanyam B, Subramanian S. 2017. Insecticide resistance status in the whitefly, Bemisia tabaci genetic groups Asia-I, Asia-II-1 and Asia-II-7 on the Indian subcontinent. Scientific Reports 7(1): 1-15.

Oliveira M R V, Henneberry T E, Anderson P. 2001. History, current status, and collaborative research projects for Bemisia tabaci. Crop Protection 20(9): 709-723.

Rajna S, Mahapatro G K, Subramanian S, Chander S, Kelageri S. 2022. Susceptibility of imidacloprid resistant whitefly Bemisia tabaci (Gennadius) to cyantraniliprole. Indian Journal of Entomology 84(3): 663-666.

Ramesh K B, Mahendra C, Kelageri S S, Rajna S, Subramanian S. 2022. Distribution and mitotype diversity of Bemisia tabaci. Indian Journal of Entomology e22710: 1-5.

Satar G, Ulusoy M R, Nauen R, Dong K. 2018. Neonicotinoid insecticide resistance among populations of Bemisia tabaci in the Mediterranean region of Turkey. Bulletin of Insectology 71(2): 171-177.

Scott J G. 1995. Effects of temperature on insecticide toxicity. pp. 111-135. Roe R M, Kuhr R J (eds.). Reviews in Pesticide Toxicology Vol 3. Toxicology Communications, Raleigh, NC, USA.

Shirani-Bidabadi L, Oshaghi M A, Enayati A A, Akhavan A A, Zahraei-Ramazani A R, Yaghoobi-Ershadi M R, Rassi Y, Aghaei-Afshar A, Koosha M, Arandian M H, Ghanei M. 2022. Molecular and biochemical detection of insecticide resistance in the leishmania vector, Phlebotomus papatasi (Diptera: Psychodidae) to dichloro diphenyl trichloroethane and pyrethroids, in central Iran. Journal of Medical Entomology 59(4): 1347-1354.

Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87(6): 651-701.