Diversity of Culturable Bacteria in Gut of White Grub Maladera Insanabilis (Brenske)

Authors

  • Anil Central Horticultural Experiment Station, ICAR-CIAH, Godhra- Vadodara Highway, Vejalpur, Panchmahals 389340, Gujarat
  • S Subramanian Division of Entomology, 2Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012
  • N S Nysanth Division of Entomology, 2Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012
  • K B Ramesh Division of Entomology, 2Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012
  • Abhishek Rana CSK Himachal Pradesh Agricultural University, Palampur 176061

DOI:

https://doi.org/10.55446/IJE.2024.1334

Keywords:

Maladera insanabilis, 16S rRNA gene, phylogenetic analysis, aerobic bacteria, anaerobic bacteria, diversity indices, colonization, gut compartments, gut bacterial diversity, colony forming units (CFUs), fermentation chamber

Abstract

Maladera insanabilis (Brenske) (Scarabaeidae: Coleoptera) is an economically important insect pest in agricultural and horticultural ecosystems. Digesting lignocellulolytic material has physiological and developmental benefits and requires microbial interaction for nutrient synthesis and utilization. Using a culture-dependent approach, we characterized the diversity of gut bacteria from different gut compartments of M. insanabilis larvae. Under aerobic culture conditions, the colonization of gut bacteria in the foregut revealed significantly higher CFU count on Nutrient agar (2.400x106± 0.206) followed by Bacillus cereus agar (2.743 x106± 0.147) and Nitrate agar (2.403 x106± 0.219) respectively. The hindgut recorded the highest CFU count of (2.780 x106± 0.031) on Thioglycolate media under anaerobic conditions. In the gut compartments of M. insanabilis larvae, there were eighteen culturable aerobic gut bacterial isolates belonging to phylum Bacillota and Pseudomonadota, and eight facultative anaerobic gut bacteria belonging to phylum Bacillota, and Pseudomonadota were found. The percentage abundance of the aerobic and anaerobic gut bacteria revealed that the genus Bacillus was the most abundant genera in the midgut (27.77%) and hindgut (25%), respectively. The foregut showed significantly higher Shannon (1.797±0.012) and Simpson (0.164±0.010) diversity for aerobic gut bacteria whereas anaerobic gut bacteria in the hindgut revealed significantly higher Shannon ((1.095±0.002) and Simpson diversity (0.257±0.010).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-05-09

How to Cite

Anil, Subramanian, S., Nysanth, N. S., Ramesh, K. B., & Rana, A. (2024). Diversity of Culturable Bacteria in Gut of White Grub <i>Maladera Insanabilis</i> (Brenske). Indian Journal of Entomology, 1–8. https://doi.org/10.55446/IJE.2024.1334

Issue

Section

Research Articles

References

Akman L, Yamashita A, Watanabe H, Oshima K, Shiba T. 2002. Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nature Genetics 32(3): 402-407.

Andert J, Marten A, Brandl R, Brune A. 2010. Inter- and intraspecific comparison of bacterial assemblages in the hindgut of humivorous scarab beetle larvae. FEMS Microbiology Ecology. 74(2): 439-449.

Arias-Cordero E, Ping L, Reichwald K, Delb H, Platzer M, Boland W. 2012. Comparative evaluation of the gut microbiota associated with the below- and above-ground life stages (larvae and beetles) of the forest cockchafer, Melolontha hippocastani. PLoS ONE 12(7): e51557.

Bedding R A, Molyneux A S, Akhurst R J. 1983. Heterorhabditis spp., Neoaplectana spp. and Steinernema kraussei: Interspecific and Intraspecific Difference in Infectivity for insects. Experimental Parasitology 55: 249-257.

Brune A. 2006. Symbiotic associations between termites and prokaryotes. In: Dworkin, M.; Falkow, S.; Rosenberg, E.; Schleifer, KH.; Stackebrandt, E., editors. The Prokaryotes. Vol. 1. New York: Springer 2: 439-474.

Ceja-Navarro J A, Nguyen N H, Karaoz U, Gross SR, Herman D J, Andersen G L, Bruns TD, Pett-Ridge J, Blackwell M, Brodie EL 2014. Compartmentalized microbial composition, oxygen gradients, and nitrogen fxation in the gut of Odontotaenius disjunctus. International Society for Microbial Ecology 8: 6-18.

Chandel R S, Gupta P R and Thakur J R. 1997. Host preference and seasonal abundance of defoliating beetles infesting fruit trees in mid hills of Himachal Pradesh. Journal of Soil Biology and Ecology 17: 140-146.

Chouaia B, Goda N, Mazza G, Alali S, Florian F, Gionechetti F, Callegari M, Gonella E, Magoga G Fusi M, Crotti E, Daffonchio D, Alma A, Paoli F, Roversi P F, Marianelli L, Montagna M. 2019. Developmental stages and gut microenvironments influence gut microbiota dynamics in the invasive beetle Popillia japonica Newman (Coleoptera: Scarabaeidae). Environmental Microbiology 21(11): 4343-4359.

Douglas A E. 2009. The microbial dimension in insect nutritional ecology. Functional Ecology 23(1): 38-47.

Egert M, Wagner B, Lemke T, Brune A, Friedrich M W. 2003. Microbial community structure in midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Applied Environmental Microbiology 69(11): 6659-6668.

Ellegard K M, Engel P. 2019. Genomic diversity landscapes of the honey bee gut microbiota. Nature Communications 10(1): 1-13.

Elpidina E N, Vinokurov K S, Gromenko V A, Rudenskaya Y A. 2001. Compartmentalization of proteinases and amylases in Nauphoeta cinerea midgut. Archives of Insect Biochemistry and Physiology 48 (4): 206–216.

Feldhaar H, Straka J, Kirschke M, Berthold K, Stoll S, Mueller M J, Gross R. 2007. Nutritional upgrading for omnivorous carpenter ants by the endosymbiont Blochmannia. BMC Biology 5(1): 48.

Gil R, Silva F J, Zientz E, Delmotte F, Gonzalez-Candelas F. 2003. The genome sequence of Blochmannia floridanus: Comparative analysis of reduced genomes. Proceedings of the National Academy of Sciences 100(16): 9388-9393.

Hernandez N, Escudero J A, Millan A S, Gonzalez-Zorn B, Lobo J M, Verdú J R, Suarez M. 2015. Culturable aerobic and facultative bacteria from the gut of the polyphagic dung beetle Thorectes lusitanicus. Insect Science 22(2): 178-190.

Horner-Devine M C, Bohannan B J M. 2006. Phylogenetic Clustering and Overdispersion in Bacterial Communities. Ecology 87: 100-10.

Huang S, Zhang H, Marshall S, Jackson T A. 2010. The scarab gut: A potential bioreactor for biofuel production. Insect Science 17(3): 175-18.

Msango Soko K R, Bhattacharya R C, Ramakrishnan B, Sharma K, Subramanian S. 2020. Functional characterization of bacteria isolated from different gut compartments of white grub, Anamola dimidiata, larvae. Journal of Environmental Biology 41(6): 1526- 1535.

Oppert B, Walters P, Zuercher M. 2006. Digestive proteinases of the larger black flour beetle, Cynaeus angustus (Coleoptera: Tenebrionidae). Bulletin of Entomological Research 96(2): 167-172.

Pathania M. 2014. Studies on phytophagous white grubs of Himachal Pradesh. Ph.D Thesis, p258. Chaudhary Sarvan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India

Pathania M, Chandel R S, Verma K S, Mehta P K. 2015. Diversity and population dynamics of phytophagous scarabeid beetle (Coleoptera: Scarabaeidae) in a different landscape of Himachal Pradesh, India. Arthropods 4(2): 46-68.

Saitou N, Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution (4)4: 406-425.

Shannon C E. 1948. A mathematical theory of communication. Bell System Technical Journal 27: 379-423 and 623-656.

Sharma B and Tara J S. 1985. Insect pests of mulberry plants (Morus sp.) in Jammu region of Jammu & Kashmir. Indian Journal of Sericulture 24: 7-11.

Simpson, E.H. 1949. Measurement of diversity. Nature 163: 688.

Tamames J, Abellan J J, Pignatelli M, Camacho A, Moya A. 2010. Environmental distribution of prokaryotic taxa. BMC Microbiology 10(1): 85.

Tamura K, Stecher G, Kumar S. 2021. MEGA 11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 32(7): 3022-3027.

Terra W R, Ferreira C. 1994. Insect digestive enzymes: properties, compartmentalization, and function. Comparative Biochemistry and Physiology 109(1): 1-62.

Terra W R. 1990. Evolution of digestive systems of insects. Annual Review of Entomology 35: 181-200.

Thomas G H, Zucker J, Macdonald S J, Sorokin A, Goryanin I. 2009. A fragile metabolic network adapted for cooperation in the symbiotic bacterium Buchnera aphidicola. BMC Systems Biology 3(1): 24.

Webb C O, Ackerly D D, McPeek S W, Donoghue M J. 2002. Phylogenies and Community Ecology. Annual Review of Ecology, Evolution, and Systematics 33: 475-505.

Zhang H, Jackson T A. 2008. Autochthonous bacterial flora indicated by PCR-DGGE of 16S rRNA gene fragments from the alimentary tract of Costelytra zealandica (Coleoptera: Scarabaeidae). Journal of Applied Microbiology 105(5): 1277-1285.