Monitoring the Toxicity of Cyantraniliprole to the Field Populations of Spodoptera litura (F.) Feeding Cole Crops

Susceptibility of Spodoptera litura to cyantraniliprole

Authors

  • K Elakkiya Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India. https://orcid.org/0000-0003-4492-7214
  • M Murugan Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India.
  • S V Krishnamaoorthy Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India.
  • N Senthil Department of Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India.
  • D Vijayalakshmi Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India.

DOI:

https://doi.org/10.55446/JE.2023.1199

Keywords:

Cole Crops, Cyantraniliprole, Diamides, MFO, GST, CarE, Spodoptera litura, LC 50 , Resistance Ratio, Toxicity.

Abstract

Spodoptera litura, a significant insect pest of tropical agriculture, devastates more than 112 cultivated plants. It has become challenging to manage with insecticides alone as it develops resistance quickly. Cyantraniliprole, a newer insecticide under diamide, was introduced a decade ago and is widely used to manage several lepidopteran and hemipteran insects. This study was taken to look after the field efficiency of cyantraniliprole against S. litura and the possible mechanism of resistance development in cole crop regions of Tamil Nadu. The maximum LC 50 obtained was 0.20 mg/ ℓ in Theni population and the least (0.11 mg/ ℓ) in Dindigul, with no significant difference between the field populations. The resistance ratio observed in the field populations were between 1.89 – 1.09, indicating that the field populations were susceptible. Further, all three detoxifying enzymes, mixed function oxidase, glutathione S-transferase, and carboxylesterase, were found to differ irrespective of the time of insecticide exposure and the populations examined, indicating that they have no role against cyantraniliprole.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-06-16

How to Cite

Elakkiya, K., Murugan, M., Krishnamaoorthy, S. V., Senthil, N., & Vijayalakshmi, D. (2023). Monitoring the Toxicity of Cyantraniliprole to the Field Populations of <i>Spodoptera litura</i> (F.) Feeding Cole Crops: Susceptibility of Spodoptera litura to cyantraniliprole. Indian Journal of Entomology, 01–05. https://doi.org/10.55446/JE.2023.1199

Issue

Section

Research Articles

References

Ahmad M, Arif M I, Ahmad, M. 2007. Occurrence of insecticide resistance in field populations of Spodoptera litura(Lepidoptera: Noctuidae) in Pakistan. Crop Protection 26(6): 809-817.

APRD, Arthropod pesticide resistance database. 2022. https://www. pesticideresistance.org/display.php?page=species&arId=282 accessed on 07.12.2022.

Bolzan A, Padovez, F E, Nascimento A R, Kaiser I S, Lira E C, Amaral F S, Kanno R H, Malaquias J B, Omoto, C. 2019. Selection and characterization of the inheritance of resistance of Spodoptera frugiperda(Lepidoptera: Noctuidae) to chlorantraniliprole and cross-resistance to other diamide insecticides. Pest Management Science 75(10): 2682-2689.

Bradford M M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dyebinding. Analytical Biochemistry 72: 248-254.

Channakeshava R, Somanagouda G. 2020. Impact of density dependent factors on seasonal incidence of Spodoptera litura(Fab.) on soybean in Dharwad. Journal of Entomology and Zoology Studies 8(4): 30-32.

Cui L, Rui C, Yang D, Wang Z, Yuan, H. 2017. De novo transcriptome and expression profile analyses of the Asian corn borer (Ostrinia furnacalis) reveals relevant flubendiamide response genes. BMC Genomics 18(1): 1-14.

EFSA (European Food Safety Authority), Rondoni G, Graziosi, I. 2022. Pest survey card on Spodoptera litura. EFSA Supporting Publications 19(11): 7454E.

Gao L, Qiao H, Wei P, Moussian B, Wang Y. 2022. Xenobiotic responses in insects. Archives of Insect Biochemistry and Physiology 109(3): e21869.

Gong Y J, Wang Z H, Shi B C, Kang Z J, Zhu L, Jin G H, Wei S J, Liu T X. 2013. Correlation between pesticide resistance and enzyme activity in the diamondback moth, Plutella xylostella. Journal of Insect Science 13(1): 135

Grace A D G, Rao P G M V, Krishnayya P V, Manoj V. 2019. Monitoring of resistance in Spodoptera litura (Fabricius) (Noctuidae: Lepidoptera) of Kurnool district of Andhra Pradesh to diamide group of insecticides. Journal of Pharmacognosy and Phytochemistry 8(6): 299-303.

Gupta G P, Rani S, Birah A, Raghuraman, M. 2005. Improved artificial diet for mass rearing of the tobacco caterpillar, Spodoptera litura (Lepidoptera: Noctuidae). International Journal of Tropical Insect Science 25(1): 55-58.

He X. 2003. A continuous spectrophotometric assay for the determination of diamondback moth esterase activity. Archives of Insect Biochemistry and Physiology 54(2): 68-76.

Hu Z D, Xia F E N G, Lin Q S, Chen H Y, Li Z Y, Fei Y I N, Liang P, Gao, X. W. 2014. Biochemical mechanism of chlorantraniliprole resistance in the diamondback moth, Plutella xylostellaLinnaeus. Journal of Integrative Agriculture 13(11): 2452-2459.

Huang S, Han Z. 2007. Mechanisms for multiple resistances in field populations of common cutworm, Spodoptera litura(Fabricius) in China. Pesticide Biochemistry and Physiology 87(1): 14-22.

Indiastat. 2022. E-resource of socio-economic statistical information of India. https://www.indiastat.com/table/cabbage/area-production-productivity-cabbage-india-1987-19/14881 accessed on 5.12.2022.

Kao C H, Hung C F, Sun C N. 1989. Parathion and methyl parathion resistance in diamondback moth (Lepidoptera: Plutellidae) larvae. Journal of Economic Entomology 82(5): 1299-1304.

Kranthi K R, Jadhav D R, Wanjari R R, Ali S S, Russell, D. 2001. Carbamate and organophosphate resistance in cotton pests in India, 1995 to 1999. Bulletin of Entomological Research 91(1): 37-46.

Lahm G P, Cordova D, Barry J D. 2009. New and selective ryanodine receptor activators for insect control. Bioorganic and medicinal chemistry 17(12): 4127-4133.

Liu X, Ning Y, Wang H, Wang K. 2015. Cross-resistance, mode of inheritance, synergism, and fitness effects of cyantraniliprole resistance in Plutella xylostella. Entomologia experimentalis et applicata 157(3): 271-278.

Muthusamy R, Vishnupriya M, Shivakumar M S. 2014. Biochemical mechanism of chlorantraniliprole resistance in Spodoptera litura(Fab) (Lepidoptera: Noctuidae). Journal of Asia-Pacific Entomology 17(4): 865-869.

Ribeiro L M, Siqueira H A, Wanderley-Teixeira V, Ferreira H N, Silva W M, Silva J. E, Teixeira A A. 2017. Field resistance of Brazilian Plutella xylostellato diamides is not metabolism-mediated. Crop Protection 93: 82-88.

Richardson E B, Troczka B J, Gutbrod O, Davies T E, Nauen R. 2020. Diamide resistance: 10 years of lessons from lepidopteran pests. Journal of Pest Science 93(3): 911-928.

Sang S, Shu B, Yi X, Liu J, Hu M, Zhong G. 2016. Cross-resistance and baseline susceptibility of Spodoptera litura(Fabricius) (Lepidoptera: Noctuidae) to cyantraniliprole in the south of China. Pest Management Science 72(5): 922-928.

Sharma R K. 2017. Acaricide resistance and its biochemical and molecular bases in two-spotted spider mite, Tetranychus urticae Koch (Doctoral dissertation, PhD thesis. Punjab Agricultural University, Ludhiana).

Su J, Lai T, Li J. 2012. Susceptibility of field populations of Spodoptera litura (Fabricius)(Lepidoptera: Noctuidae) in China to chlorantraniliprole and the activities of detoxification enzymes. Crop Protection 42: 217-222.

Tamilselvan R, Kennedy J S, Suganthi A. 2021. Monitoring the resistance and baseline susceptibility of Plutella xylostella(L.)(Lepidoptera: Plutellidae) against spinetoram in Tamil Nadu, India. Crop Protection 142: 105491.

Troczka B J, Williams A J, Williamson M S, Field L M, Lüemmen P, Davies T G. 2015. Stable expression and functional characterisation of the diamond back moth ryanodine receptor G4946E variant conferring resistance to diamide insecticides. Scientific Reports 5(1): 1-11.

Troczka B J, Williamson M S, Field L M, Davies T E. 2017. Rapid selection for resistance to diamide insecticides in Plutella xylostella via specific amino acid polymorphisms in the ryanodine receptor. Neurotoxicology 60: 224-233.

Tukey J W. 1977. Exploratory data analysis.Addison-Wesley Series in Behavioural Science: Quantitative Methods 2: 131-160

Wang X, Liu X, Liu C, Wen S, Xue Y, Jin Y,Zhang G, Xia X. 2022. Effects of sublethal concentrations of cyantraniliprole on the biology and metabolic enzyme activities of Laodelphax striatellus(Fallén). Crop Protection 156: 105964.

Wang X, Lou L, Su J. 2019. Prevalence and stability of insecticide resistances in field population of Spodoptera litura(Lepidoptera: Noctuidae) from Huizhou, Guangdong Province, China. Journal of Asia-Pacific Entomology 22: 728-732.

Yasoob H, Abbas N, Li Y, Zhang Y. 2018. Selection for resistance, life history traits and the biochemical mechanism of resistance to thiamethoxam in the maize armyworm, Mythimna separata (Lepidoptera: Noctuidae). Phytoparasitica 46(5): 627-634.

Zhang S, Zhang X, Shen J, Mao K, You H, Li J. 2016. Susceptibility of field populations of the diamondback moth, Plutella xylostella, to a selection of insecticides in Central China. Pesticide biochemistry and physiology 132: 38-46.

Zuo Y, Wang H, Xu Y, Huang J, Wu S, Wu Y, Yang, Y. 2017. CRISPR/ Cas9 mediated G4946E substitution in the ryanodine receptor of Spodoptera exiguaconfers high levels of resistance to diamide insecticides. Insect biochemistry and molecular biology 89: 79-85.