RNA Interference in Thrips Vectors: A Step Forward Toward Sustainable Management

Authors

  • Vavilapalli Rajesh Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi 110012
  • Rakesh V. Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi 110012
  • Sumit Jangra Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi 110012
  • Amalendu Ghosh Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi 110012

DOI:

https://doi.org/10.55446/IJE.2023.1113

Keywords:

RNA interference, thrips, tospoviruses, dsRNA delivery methods, dsRNA uptake and spread, Antisense oligonucleotide (ASO)-mediated silencing

Abstract

Thrips are major pests of agricultural and horticultural crops worldwide. In addition to causing direct damage, thrips are the most common vector of tospoviruses. Currently, thrips control is mostly based on chemical insecticides, but effective control can be difficult to achieve because it has developed resistance to various insecticides. Therefore, there is an urgent need for novel alternative management options. A viable strategy for the management of the virus-vector complex involves understanding the molecular links between thrips and viruses and disrupting their association. RNA interference, a sequence-specific method to suppress target gene expression, is a conserved process in all eukaryotic organisms and has emerged as a new tool for reverse genetics and potential pest control. Advancements in RNA interference-based gene silencing techniques in the past few years could potentially be utilized in the management of the thrips-tospovirus complexes. RNA interference-mediated plant protection strategies have the potential to revolutionize pest management practices in a sustainable and effective way if development is carried out profoundly by discerning bioinformatics identification, in-silico designing of RNAi trigger molecules, laboratory and field-based toxicity and biosafety investigations.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-04-03

How to Cite

Rajesh, V., V., R., Jangra, S., & Ghosh, A. (2023). RNA Interference in Thrips Vectors: A Step Forward Toward Sustainable Management. Indian Journal of Entomology, 1–10. https://doi.org/10.55446/IJE.2023.1113

Issue

Section

Review Articles

References

Akram M. 2010. First report of Groundnut bud necrosis virus infecting peas (Pisum sativum) in India. New Disease Reports 21.

Andongma A A, Greig C, Dyson P J, Flynn N, et al. 2020. Optimization of dietary RNA interference delivery to western flower thrips Frankliniella occidentalis and onion thrips Thrips tabaci. Archives of Insect Biochemistry and Physiology 103(3). https://doi.org/10.1002/ARCH.21645

Badillo-Vargas I E, Chen Y, Martin K M, Rotenberg D, et al. 2019. Discovery of novel thrips vector proteins that bind to the viral attachment protein of the plant bunyavirus tomato spotted wilt virus. Journal of Virology 93(21). https://doi.org/10.1128/JVI.00699-19

Badillo-Vargas I E, Rotenberg D, Schneweis B A, Whitfield A E. 2015. RNA interference tools for the western flower thrips, Frankliniella occidentalis. Journal of Insect Physiology 76: 36–46. https://doi.org/10.1016/J.JINSPHYS.2015.03.009

Bhat A I, Jain R K, Varma A, Lal K. 2002. Nucleocapsid protein gene sequence studies suggest that soybean bud blight is caused by a strain of groundnut bud necrosis virus. Current Science 1389-1392. https://www.jstor.org/stable/24106015

Buiel A A M, Parlevliet J E, Lenne J M. 1995. Recent studies on peanut bud necrosis disease: proceedings of a meeting 20 Mar 1995. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Asia center, Patancheru, Andhra Pradesh, India.

Christiaens O, Whyard S, Velez A M, Smagghe G. 2020. Double-Stranded RNA technology to control insect pests: current status and challenges. Frontiers in Plant Science 11: 451. https://doi.org/10.3389/FPLS.2020.00451/BIBTEX

Cooper A M W, Silver K, Zhang J, Park Y, et al. 2019. Molecular mechanisms influencing the efficiency of RNA interference in insects. Pest Management Science 75(1): 18-28. https://doi.org/10.1002/PS.5126

Daimei G, Raina H S, Devi P P, Saurav G K et al. (2017). Influence of groundnut bud necrosis virus on the life history traits and feeding preference of its vector, Thrips palmi. Phytopathology 107(11): 1440-1445. https://doi.org/10.1094/PHYTO-08-16-0296-R

Debat H J, Grabiele M, Ducasse D A, Lopez Lambertini P M. 2015. Use of silencing reporter and agroinfiltration transient assays to evaluate the potential of hpRNA construct to induce multiple tospovirus resistance. Biologia Plantarum 59(4): 715-725. https://doi.org/10.1007/S10535-015-0530-1

Dias N, Stein C. 2002. Antisense oligonucleotides: basic concepts and mechanisms. Molecular cancer therapeutics 1(5): 347-355.

Ertunc F. 2020. Emerging plant viruses. Emerging and Re-emerging Viral Pathogens. Academic press. 1041–1062 pp. https://doi.org/10.1016/B978-0-12-819400-3.00046-6

Fusco D, Dinallo V, Marafini I, Figliuzzi M M, et al. 2019. Antisense oligonucleotide: Basic concepts and therapeutic application in inflammatory bowel disease. Frontiers in Pharmacology 10: 305. https://doi.org/10.3389/FPHAR.2019.00305/BIBTEX

Gao Y, Kim M J, Kim J H, Jeong I H, et al. 2020. Transcriptomic identification and characterization of genes responding to sublethal doses of three different insecticides in the western flower thrips, Frankliniella occidentalis. Pesticide Biochemistry and Physiology 167: 104596 https://doi.org/10.1016/J.PESTBP.2020.104596

Ghosh A, Basavaraj Y B, Jangra S, Das A. 2019. Exposure to watermelon bud necrosis virus and groundnut bud necrosis virus alters the life history traits of their vector, Thrips palmi (Thysanoptera: Thripidae). Archives of Virology 164(11): 2799-2804. https://doi.org/10.1007/S00705-019-04381-Z/FIGURES/3

Ghosh A, Dey D, Timmanna, Basavaraj, et al. 2017. Thrips as the vectors of tospoviruses in Indian agriculture. A Century of Plant Virology in India 537–561 pp. https://doi.org/10.1007/978-981-10-5672-7_24/COVER

Han S H, Kim J H, Kim K, Lee S H. 2019. Selection of lethal genes for ingestion RNA interference against western flower thrips, Frankliniella occidentalis, via leaf disc-mediated dsRNA delivery. Pesticide Biochemistry and Physiology 161: 47–53. https://doi.org/10.1016/J.PESTBP.2019.07.014

Heu C C, Mccullough F M, Luan J, Rasgon J L. 2020. CRISPR-Cas9-Based Genome Editing in the Silverleaf Whitefly (Bemisia tabaci). The CRISPR journal 3(2): 89-96. https://doi.org/10.1089/CRISPR.2019.0067

Hille F, Charpentier E. 2016. CRISPR-Cas: biology, mechanisms and relevance. Philosophical Transactions of the Royal Society. Biological Sciences, 371(1707). https://doi.org/10.1098/RSTB.2015.0496

Jagdale S S, Ghosh A. 2019. In silico analyses of molecular interactions between groundnut bud necrosis virus and its vector, Thrips palmi. Virus disease, 30(2): 245–251. https://doi.org/10.1007/S13337-019-00521-W

Jahani M, Christiaens O, Smagghe G. 2018. Analysis of artificial diet to deliver dsRNA in the western flower thrips (Frankliniella occidentalis). International Organization for Biological and Integrated Control of Noxious Animals and Plants (IOBC), West Palaearctic Regional Section (WPRS) Bulletin. 131: 41-50.

Jain R G, Fletcher S J, Manzie N, Robinson K E, et al. 2022. Foliar application of clay-delivered RNA interference for whitefly control. Nature Plants 8(5): 535-548. https://doi.org/10.1038/s41477-022-01152-8

Jain R G, Robinson K E, Asgari S, Mitter N. 2021. Current scenario of RNAi-based hemipteran control. Pest Management Science 77(5): 2188-2196. https://doi.org/10.1002/PS.6153

Jain R K, Umamaheswaran K, Bhat A I, Thien H X, et al. 2002. Necrosis disease on cowpea, mung bean and tomato is caused by groundnut bud necrosis virus. Indian Phytopathology 55(3).

Jiang F, Doudna J A. 2017. CRISPR-Cas9 structures and mechanisms. Annual Review of Biophysics 46(1): 505-529. https://doi.org/10.1146/annurev-biophys-062215-010822

Jones D R. 2005. Plant viruses transmitted by thrips. European Journal of Plant Pathology 113(2): 119-157. https://doi.org/10.1007/S10658-005-2334-1

Joost P H, Riley D G. 2004. Sampling techniques for thrips (Thysanoptera: Thripidae) in pre flowering tomato. Journal of Economic Entomology 97(4): 1450-1454. https://doi.org/10.1093/JEE/97.4.1450

Kurmanath K V. 2021. Pests attack devastates chilli crop in Telangana, AP - The Hindu. https://www.thehindubusinessline.com/markets/commodities/pests-attack-chilli-crop-in-telangana-ap/article37917372.ece

Konakalla N C, Bag S, Deraniyagala A S, Culbreath A K, et al. 2021. Induction of Plant Resistance in Tobacco (Nicotiana tabacum) against Tomato Spotted Wilt Orthotospovirus through Foliar Application of dsRNA. Viruses 13(4). https://doi.org/10.3390/V13040662

Kunkalikar S R, Poojari S, Arun B M, Rajagopalan P A, et al. 2011. Importance and genetic diversity of vegetable-infecting tospoviruses in India. Phytopathology 101(3): 367-376. https://doi.org/10.1094/PHYTO-02-10-0046

Kunte N, McGraw E, Bell S, Held D, et al. 2020. Prospects, challenges and current status of RNAi through insect feeding. Pest Management Science 76(1): 26-41. https://doi.org/10.1002/PS.5588

Liu M, Rehman S, Tang X, Gu K, et al. 2019. Methodologies for improving HDR efficiency. Frontiers in Genetics 9: 691 https://doi.org/10.3389/FGENE.2018.00691

Mahanta D K, Jangra S, Priti S, Ghosh A, et al. 2022. Groundnut bud necrosis virus modulates the expression of innate immune, endocytosis, and cuticle development- associated genes to circulate and propagate in its vector, Thrips palmi. Frontiers in Microbiology 13: 773238. https://doi.org/10.3389/FMICB.2022.773238/FULL

Mandal B, Jain R K, Krishnareddy M, Krishna Kumar N K, et al. 2012. Emerging problems of tospoviruses (Bunyaviridae) and their management in the Indian subcontinent. Plant Disease 94(4): 468-479.

Mengstie M A, Wondimu B Z. 2021. Mechanism and Applications of CRISPR/Cas-9-Mediated Genome Editing. Biologics: Targets & Therapy 15: 353-361. https://doi.org/10.2147/BTT.S326422

Mitter N, Worrall E A, Robinson K E, Li P, et al. 2017. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nature Plants 3(2): 1–10. https://doi.org/10.1038/nplants.2016.207

Mitter N, Zhai Y, Bai A X, Chua K, et al. 2016. Evaluation and identification of candidate genes for artificial microRNA-mediated resistance to tomato spotted wilt virus. Virus research 211: 151-158. https://doi.org/10.1016/J.VIRUSRES.2015.10.003

Mo J, Munro S, Boulton A, Stevens M. 2008. Within-plant distribution of onion thrips (Thysanoptera: Thripidae) in onions. Journal of Economic Entomology 101(4): 1331-1336. https://doi.org/10.1093/JEE/101.4.1331

Morse J G, Hoddle M S. 2005. Invasion biology of thrips 51: 67-89. https://doi.org/10.1146/ANNUREV.ENTO.51.110104.151044

Mound L A. 2015. CSIRO entomology - thysanoptera (Thrips) world checklist. https://www.ento.csiro.au/thysanoptera/worldthrips.php

Nault B A, Shelton A M. 2010. Impact of insecticide efficacy on developing action thresholds for pest management: a case study of onion thrips (Thysanoptera: Thripidae) on onion. Journal of Economic Entomology 103(4): 1315–1326. https://doi.org/10.1603/EC10096

Nilon A, Robinson K, Pappu H R, Mitter N. 2021. Current status and potential of rna interference for the management of tomato spotted wilt virus and thrips vectors. Pathogens 10(3): 320. https://doi.org/10.3390/PATHOGENS10030320

Niu J, Taning C N T, Christiaens O, Smagghe G, et al. 2018. Rethink RNAi in insect pest control: challenges and perspectives. Advances in Insect Physiology 55: 1–17. https://doi.org/10.1016/BS.AIIP.2018.07.003

Oberemok V V, Laikova K V, Repetskaya A I, Kenyo I M, et al. 2018. A half-century history of applications of antisense oligonucleotides in medicine, agriculture and forestry: we should continue the journey. Molecules 23(6). https://doi.org/10.3390/MOLECULES23061302

Porteus M. 2016. Genome editing: a new approach to human therapeutics. Annual Review of Pharmacology and Toxicology 56: 163-190. https://doi.org/10.1146/annurev-pharmtox-010814-124454

Prins M, Resende R D O, Anker C, Van Schepen A, et al. 1996. Engineered RNA-mediated resistance to tomato spotted wilt virus is sequence specific. Molecular Plant-Microbe Interactions 9(5): 416-418. https://doi.org/10.1094/MPMI-9-0416

Priti, Mukherjee S K, Ghosh A. 2022. Silencing of Thrips palmi UHRF1BP1 and PFAS using antisense oligos induces mortality and reduces tospovirus titer in its vector. Pathogens 11(11): 1319. https://doi.org/10.3390/PATHOGENS11111319

Rachana R R, Roselin P, Amutha M, Sireesha K, et al. 2022. Invasive Pest, Thrips parvispinus (Karny) (Thysanoptera: Thripidae)-A Looming Threat to Indian Agriculture. Current Science 122(2): 211-213. https://doi.org/10.18520/cs/v122/i2/211-213

Reddy D V R, Buiel A A M, Satyanarayana T, Dwivedi S L, et al. (1995). Peanut bud necrosis disease: an overview. Proceedings of a Meeting, 20 Mar 1995, ICRISAT Asia Centre, Patancheru, Andhra Pradesh, India.

Riley D G, Joseph S V, Srinivasan R, Diffie S. 2011. Thrips vectors of tospoviruses. Journal of Integrated Pest Management 2(1): 1–10. https://doi.org/10.1603/IPM10020

Riley D G, Pappu H R. 2004. Tactics for Management of Thrips (Thysanoptera: Thripidae) and tomato spotted wilt virus in tomato. Journal of Economic Entomology 97(5): 1648-1658. https://doi.org/10.1603/0022-0493-97.5.1648

Rotenberg D, Jacobson A L, Schneweis D J, Whitfield A E. 2015. Thrips transmission of tospoviruses. Current Opinion in Virology 15: 80-89. https://doi.org/10.1016/J.COVIRO.2015.08.003

Scholthof K B G, Adkins S, Czosnek H, Palukaitis P, et al. 2011. Top 10 plant viruses in molecular plant pathology. Molecular plant pathology 12(9): 938-954. https://doi.org/10.1111/J.1364-3703.2011.00752.X

Shao M, Xu T R, Chen C S. 2016. The big bang of genome editing technology: development and application of the CRISPR/Cas9 system in disease animal models. Zoological Research 37(4): 191–204. https://doi.org/10.13918/J.ISSN.2095-8137.2016.4.191

Shi J X, Zhou J X, Jiang F, Li Z H, et al. 2022. The effects of the E3 ubiquitin-protein ligase UBR7 of Frankliniella occidentalis on the ability of insects to acquire and transmit TSWV. (Pre-print) https://doi.org/10.21203/rs.3.rs-1755807/v1

Singh R B, Srivastava K K, Pandey S K, Paul Khurana S M. 1997. Assessment of yield losses due to potato stem necrosis disease. Indian Journal of Virology 13: 135-137.

Singh S, Gupta M, Pandher S, Kaur G, et al. 2019. RNA sequencing, selection of reference genes and demonstration of feeding RNAi in Thrips tabaci (Lind.) (Thysanoptera: Thripidae). BMC Molecular Biology 20(1): 1-21. https://doi.org/10.1186/S12867-019-0123-1/TABLES/4 Steenbergen M, Abd-El-Haliem A, Bleeker P, Dicke, M, et al. 2018. Thrips advisor: exploiting thrips-induced defences to combat pests on crops. Journal of Experimental Botany 69(8): 1837-1848. https://doi.org/10.1093/JXB/ERY060

Tabein S, Jansen M, Noris E, Vaira A M, et al. 2020. The induction of an effective dsRNA-Mediated resistance against tomato spotted wilt virus by exogenous application of double-stranded RNA largely depends on the selection of the viral RNA target region. Frontiers in Plant Science 11: 533338. https://doi.org/10.3389/FPLS.2020.533338

Thien H X, Bhat A I, Jain R K. 2003. Mungbean necrosis disease caused by a strain of groundnut bud necrosis virus. Indian Phytopathology 56(1): 54-60.

Tkachev A V. 2004. Pyrethroid insecticides as analogs of the defensive chemicals of plants. George Soros - Open Society Foundation 8: 56–63.

Vavilapalli Rajesh. 2022. Silencing key genes of Thrips palmi for novel management option. ICAR- Indian Agricultural Research Institute, New Delhi, India. Thesis.

Velez A M, Fishilevich E. 2018. The mysteries of insect RNAi: a focus on dsRNA uptake and transport. Pesticide Biochemistry and Physiology 151: 25-31. https://doi.org/10.1016/J.PESTBP.2018.08.005

Vivek Bhoomi. 2021. Invasive insect ‘Thrips’ destroys chilli crop, farmers’ hopes- The New Indian Express. https://www.newindianexpress.com/states/telangana/2021/dec/06/invasive-insect-thrips-destroys-chilli-crop-farmers-hopes-2392254.html

Whitfield A E, Kumar N K K, Rotenberg D, Ullman D E, et al. 2008. A soluble form of the tomato spotted wilt virus (TSWV) glycoprotein G(N) (G(N)-S) inhibits transmission of TSWV by Frankliniella occidentalis. Phytopathology 98(1): 45-50. https://doi.org/10.1094/PHYTO-98-1-0045

Whitfield A E, Ullman D E, German T L. 2004. Expression and characterization of a soluble form of tomato spotted wilt virus glycoprotein GN. Journal of Virology 78(23): 13197-13206. https://doi.org/10.1128/JVI.78.23.13197-13206.2004

Whitten M M. 2019. Novel RNAi delivery systems in the control of medical and veterinary pests. Current Opinion in Insect Science 34: 1-6. https://doi.org/10.1016/J.COIS.2019.02.001

Whitten M M A, Facey P D, Del Sol R, Fernandez-Martínez L T, et al. 2016. Symbiont-mediated RNA interference in insects. Proceedings. Biological Sciences 283(1825): 20160042–20160042. https://doi.org/10.1098/RSPB.2016.0042

Widana Gamage S M K, Rotenberg D, Schneweis D J, Tsai C W, et al. 2018. Transcriptome-wide responses of adult melon thrips (Thrips palmi) associated with capsicum chlorosis virus infection. PLOS ONE 13(12): e0208538. https://doi.org/10.1371/JOURNAL.PONE.0208538

Wu M, Dong Y, Zhang Q, Li S, et al. 2022. Efficient control of western flower thrips by plastid-mediated RNA interference. Proceedings of the National Academy of Sciences of the United States of America 119(15). https://doi.org/10.1073/PNAS.2120081119/-/DCSUPPLEMENTAL

Yan S, Ren B, Zeng B, Shen J. 2020. Improving RNAi efficiency for pest control in crop species. BioTechniques 68(5): 283-290. https://doi.org/10.2144/BTN-2019-0171/ASSET/IMAGES/LARGE/FIGURE1.JPEG

Yang H, Ren S, Yu S, Pan H, et al. 2020. Methods Favoring Homology-Directed Repair Choice in Response to CRISPR/Cas9 Induced-Double Strand Breaks. International Journal of Molecular Sciences 21(18): 1-20. https://doi.org/10.3390/IJMS21186461

Yuan J W, Song H X, Chang Y W, Yang F, et al. 2022. Identification, expression analysis and functional verification of two genes encoding small heat shock proteins in the western flower thrips, Frankliniella occidentalis (Pergande). International Journal of Biological Macromolecules 211: 74-84. https://doi.org/10.1016/J.IJBIOMAC.2022.05.056

Zhang T, Zhi J R, Li D Y, Liu L, et al. 2022. Effect of different double-stranded RNA feeding solutions on the RNA interference of V-ATPase-B in Frankliniella occidentalis. Entomologia Experimentalis et Applicata 170(5): 427-436. https://doi.org/10.1111/EEA.13153

Zhu K Y, Palli S R. 2020. Mechanisms, Applications, and Challenges of Insect RNA Interference 65: 293-311. https://doi.org/10.1146/ANNUREV-ENTO-011019-025224

Zotti M, Dos Santos E A, Cagliari D, Christiaens O, et al. 2018. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. Pest Management Science 74(6): 1239-1250. https://doi.org/10.1002/PS.4813

Zotti M J, Smagghe G. 2015. RNAi Technology for Insect Management and Protection of Beneficial Insects from Diseases: Lessons, Challenges and Risk Assessments. Neotropical Entomology 44(3): 197-213. https://doi.org/10.1007/S13744-015-0291-8.