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ABSTRACT

Plants emit a variety of compounds in response to an attack by herbivores. Herbivore-induced plant 
volatiles (HIPVs) mediate interactions between plants and natural enemies. Volatiles were collected from 
sweet sorghum plants oviposited by Chilo partellus Swinhoe and the response of the parasitoid Cotesia 
flavipes Cameron to these volatiles were tested in four-arm olfactometer. Cotesia flavipes spent significantly 
more time (6.52± 0.72 min, p = 0.0000) in arm treated with C. partellus oviposited plant volatiles compared 
to untreated control (3.17± 0.19 min). These compounds were identified by GC-MS as octanal, decanal, 
nonanal, 6-methyl 5 heptanone and caryophyllene. Nonanal and decanal were 8.46 and 4.66%, respectively 
in plants with Chilo eggs, whereas in the control plants, it was 5.48 and 1.39%, respectively. The behavior 
of parasitoid towards HIPVs enhances the development of sustainable IPM strategies by manipulating 
the foraging behaviour of parasitoids. 
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Sweet sorghum [Sorghum bicolor (L.) Moench] is an 
annual, C4 crop with sugar-rich stalks and characterized 
by a high photosynthetic efficiency (Lingle et al., 2012; 
Murray et al., 2009; Smith et al., 1987). It provides 
both grain and stem which will be used for sugar, 
alcohol, syrup, jaggery, fodder, fuel, etc.; and there 
are about 4,000 sweet sorghum cultivars (Rutto et al., 
2013). Crop productivity is severely affected due to 
stem borer species observed as serious pests in Asia 
and Africa, of which the spotted stem borer (Chilo 
partellus Swinhoe) is the most destructive. It occurs 
throughout the crop growth and development, both 
in Asia and Africa. Within the semiarid tropics alone 
it causes US$ 334 million annual loss to sorghum 
(Sharma, 2006). The major components of IPM are 
cultural practices, insecticides, biological control and 
host plant resistance. Chemical control is expensive 
and often beyond the reach of resource poor farmers. 
Insecticides are also ineffective for stem borer control 
because larvae bore into the shoot and pupate within 
which makes them hard to target (Khan et al., 2000). 
Under such circumstances, host plant resistance is the 
best method, and considerable progress has been made 
in developing techniques to screen for resistance and 
in identifying mechanisms of resistance. However, to 
date stem borer resistance has not yet been bred into 
high yielding cultivars. Stem borer larvae have a broad 
range of natural enemies which are able to locate and 
attack the larvae that feed inside the plant tissue. These 

biological control agents are successful based on their 
efficiency to search and locate target hosts (Nordlund 
et al., 1988). 

Plants have evolved sophisticated defense 
mechanisms which protect against insect attack. They 
respond to insect attack by releasing a blend of volatiles 
that serve as foraging cues for parasitoids. Parasitoids 
use volatile compounds released by insect herbivore-
damaged plants to locate their hosts.  These volatiles can 
be exploited to attract parasitoids to improve biological 
control in the field. Volatile chemical compounds from 
the host plant and the herbivores, or the interaction of 
the two, play an important role (Dicke, 1994), and to 
locate their hosts during foraging parasitoids utilize 
volatiles cues (Finidori-Logli et al., 1996; Potting et 
al., 1995; Steinberg et al., 1993; Vet and Dicke, 1992). 
The host plant volatile profile thus plays a key role in 
attracting or repelling or retaining the natural enemies 
(Vinson, 1975; Gohole et al., 2003). In tritrophic 
systems consisting of plants, herbivorous arthropods 
and their carnivorous natural enemies, carnivores 
are attracted to volatile compounds emitted by plants 
infested by herbivores (Takabayashi and Dicke, 1996; 
Arimura et al., 2009). Plant odours are used as cues 
by the parasitoids and predators (Vinson, 1976, 1981; 
Nordlund et al., 1988). These odours are inducible 
and only released after damage by herbivores and are 
termed as herbivore induced plant volatiles (HIPVs). 
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The quantity and the composition blend of compounds 
emitted by plants vary with the herbivore, the plant 
species and the genotype. The compositions of these 
volatiles are specific, depending on the species and 
cultivars (Takabayashi and Dicke, 1996; Arimura et al., 
2009). These herbivore species-specific HIPVs facilitate 
the location of host-infested plants by parasitoids (Vet 
and Dicke, 1992); and their production is triggered on 
feeding damage by herbivorous larvae. Plant responses 
to an earlier stage of insect attack (egg deposition) 
(Colazza et al., 2004; Hilker and Meiners, 2006; Bruce 
et al., 2009; Tamiru et al., 2011). Defenses elicited 
due to eggs benefit plants as they enable defense to be 
switched on early, before leaf or stem damage is caused 
by larvae (Hilker and Meiners, 2006; Bruce et al., 2009). 
The tritrophic interactions presents an opportunity for 
development of cost effective and environmentally 
benign IPM approaches. Herein, role of chemical cues 
emanating from the sweet sorghum plants oviposited 
by C. partellus in the acceptance of host by searching 
parasitoid C. flavipes has been explored.

MATERIALS AND METHODS

Sweet sorghum plants (cv. ‘Wray’) were grown 
individually in pots in a nethouse. The plants were 
grown in plastic pots (13x 14 cm dia). Plants at the stage 
of five fully grown leaves were used for the volatiles 
collection. Plants were introduced into the cages with 
six C. partellus females and removed 24 hr later. On 
an average, 12 eggs per 5 plants were laid. Sweet 
sorghum plants with eggs were used for the collection 
of volatiles. Intact plants were used as controls. The 
C. partellus was maintained in the laboratory on 
semisynthetic diet under controlled conditions (27°C, 
70% RH, 12:12 light-dark photoperiod) as described by 
Padmaja et al., 2012. The parasitic wasp, C. flavipes was 
reared on larvae of C. partellus, with  the appropriate 
stages removed from artificial diet and fed for 24 hr 
on pieces of sorghum stem for acclimatization; larvae 
were exposed to 24 hr old mated Cotesia females for 
oviposition using the hand-stinging method; only 
one stinging was allowed/ larva and adult parasitoid. 
Parasitized larvae were placed individually in a glass 
vial containing a sorghum stem piece, and plugged 
with cotton; and these vials incubated at 27°C, at 
70% RH, and 12L: 12D photoperiod for the parasite 
emergence. Volatiles from the sweet sorghum cultivar 
“Wray” grown individually in pots in a nethouse were 
entrained. Multiple collections were made with portable 
equipment that allows sampling of volatiles, for 21 days 
after seedling emergence, the most susceptible stage 

(Padmaja et al., 2010).  Aliquots of attractive headspace 
samples were analyzed on a Gas Chromatography 
(GC) - Agilent technologies 7890A system equipped 
with 7000 GC-MS Tripple quad with column (DB - 5 
MS, 30 m length, 0.25 mm i.d., 0.50 μm film thickness) 
directly coupled to a mass spectrometer. The oven 
temperature was maintained at 30°C for 5 min, rate 
5°C/min to 250°C hold for 11 min. Compounds were 
identified by comparison of retention indices and mass 
spectra with those of authentic standards 6-methyl 5 
heptanone, octanal, decanal, nonanal and caryophyllene 
obtained from Sigma Aldrich. Responses of parasitoids 
to plant derived volatiles were tested in a perspex 
four-arm olfactometer (Padmaja et al., 2010). Air was 
drawn through the four arms towards the center at 260 
ml min-1. Headspace samples (10 μl) were applied to 
a piece of filter paper with a micropipette and placed 
in an inlet port at the end of each olfactometer arm; 
and freshly emerged C. flavipes were transferred 
individually into the central chamber, and time spent 
in different regions was compared. A choice test to 
compare insect responses to headspace samples from 
oviposition induced and control (unexposed) plants was 
carried out by placing the test stimuli (10 μl aliquots 
of headspace sample) in two opposite arms. The other 
two arms contained filter paper with 10 μl diethyl ether, 
and were used as controls. Time spent in each region 
was recorded. Ten replicates were carried out. A paired-
sample t-test was employed to analyze the differences 
between the time spent by C. flavipes in each arm of 
the olfactometer.

RESULTS AND DISCUSSION

Coupled gas chromatography-mass spectrometry 
revealed that the sweet sorghum genotype ‘Wray’ 
emitted more volatile compounds when exposed to C. 
partellus eggs compared to unexposed plants (Fig. 1). 
Major components that have been identified in both 
plant categories were 6-methyl 5 heptanone, octanal, 
decanal, nonanal and caryophyllene. Nonanal being 
the most abundant volatile compound emitted both in 
intact and in C. partellus oviposited plants. Significant 
differences in the abundance of nonanal, decanal, 
caryophyllene and octanal were observed in the 
headspace profile between intact plants and plants 
with C. partellus eggs. More specifically, nonanal and 
decanal were 8.46 and 4.66%, respectively, in plants 
with Chilo eggs, whereas in the control plants, it was 
5.48 and 1.39%, respectively (Table 1). Female C. 
flavipes, spent significantly more time in the region 
with volatiles from ‘Wray’ exposed to oviposition by 
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C. partellus, compared to regions with unexposed and 
blank controls (p<0.0000; df = 9) (Fig. 2). The increase 
in time spent is a positive response indicating that 

attraction and arrestment of parasitoids increased. A 
number of studies have shown that OIPVs serve as cues 
for foraging parasitoids (Hilker and Fatouros, 2015; 
Colazza et al., 2004; Tamiru et al., 2012). Although 
it was first considered as a plant’s response to wound 
oviposition (Hilker and Fatouros, 2015), later studies 
have shown that oviposition itself is responsible for 
the induction of qualitative and quantitative changes in 
the volatile profile of egg infested plants (Tamiru et al., 
2011; Anastasaki et al., 2015). Plants benefit by an early 
activation of defense mechanisms by egg deposition, 
which enhances their defense before any damage can 
occur (Hilker and Fatouros, 2015; Bruce et al., 2009). The 
behavioral response of egg parasitoid Trichogramma 
achaeae females to HIPVs produced by tomato plants 
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Table 1. Identification of volatile compounds (GC-MS) in sweet sorghum cultivar 'Wray'   
  Without Chilo eggs   With Chilo eggs 
Peak RT Area % ID of compound Peak RT Area % ID of compound 

1 16.938 2.08 6-methyl 5 heptanone 1 16.928 3.61 6-methyl 5 heptanone 
2 17.614 1.16 Octanal 2 17.604 3.33 Octanal 
3 21.014 5.48 Nonanal 3 21.004 8.46 Nonanal 
4 24.201 1.39 Decanal 4 24.153 4.66 Decanal 
5 30.102 2.28 Caryophyllene 5 30.092 2.84 Caryophyllene 
 
 
 

 

 
 
Fig. 1. Gas chromatogram (GC) traces of compounds in headspace samples of sweet sorghum  
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Fig. 1. Gas chromatogram (GC) traces of compounds in headspace samples of sweet sorghum 

Table 1. Identification of volatile compounds (GC-MS) in sweet sorghum cultivar ‘Wray’

Peak
Without Chilo eggs

Peak
With Chilo eggs

RT Area % ID of compound RT Area % ID of compound
1 16.938 2.08 6-methyl 5 heptanone 1 16.928 3.61 6-methyl 5 heptanone
2 17.614 1.16 Octanal 2 17.604 3.33 Octanal
3 21.014 5.48 Nonanal 3 21.004 8.46 Nonanal
4 24.201 1.39 Decanal 4 24.153 4.66 Decanal
5 30.102 2.28 Caryophyllene 5 30.092 2.84 Caryophyllene
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Fig. 2. Behavioural response of C. flavipes in a four-arm olfactometer bioassay to volatiles 

collected from sweet sorghum (Wray) plants (n=10) 
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Fig. 2. Behavioural response of C. flavipes in a four-arm 
olfactometer bioassay to volatiles collected from sweet 

sorghum (Wray) plants (n=10)
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infested with Tuta absoluta eggs or larvae in tomato 
when studied revealed that oviposition and larval 
feeding by T. absoluta significantly enhanced HIPV 
emission. The analysis of volatiles released by tomato 
plants, either infested or uninfested, coupled with the 
response of T. achaeae in the olfactometer tests was 
consistent with what was expected in terms of the 
foraging behavior of a generalist parasitoid (Gontijo 
et al., 2019).

The present study demonstrated quantitative 
variations in volatiles in sweet sorghum cultivar ‘Wray’ 
when C. partellus eggs were laid; and a preference was 
observed in an olfactometer bioassay of C. flavipes 
parasitoids for volatiles from plants exposed to egg 
deposition (Fig. 2). Attraction of larval parasitoids 
means that natural enemies can also attack newly 
hatching larvae. Volatiles emitted from apple leaves 
infested by two-spotted spider mite Tetranychus urticae 
attracted the P. persimilis and Metaseiulus occidentalis 
(Sabelis and Van de Baan, 1983).  Upon infestation by 
T. urticae, Lima bean plants emitted a blend of volatiles 
attracting the predatory mite P. persimilis (Dicke et al., 
1990 a,b). Corn plants damaged by Spodoptera exigua 
emitted volatiles that attracted the parasitoid Cotesia 
marginiventris Cresson (Turlings et al., 1990). Several 
behavioral and electrophysiological studies had revealed 
the attractiveness of HIPVs to predators (Drukker et 
al., 1995; Zhang et al., 2009; Zhang et al., 2012) and 
parasitoids (Turlings and Tumlinson, 1992; Yu et al., 
2008; Yu et al., 2010).  Maize plants under attack by 
larvae of S. littoralis attracted C. marginiventris and 
Campoletis sonorensis Cameron which resulted in 
higher parasitization and reduced feeding and weight 
gain of the host larvae (Hoballah and Turlings, 2001). 
Parasitized larvae attacked plants produced 30% more 
seeds than plants attacked by unparasitized larvae. 
Insect parasitoids are known to utilize the different 
volatile profile of infested plants vs non-infested plants 
to detect their hosts and prey. The present study is one 
of the first in which the egg induced volatile emission 
effect is studied in sweet sorghum. It is proved that the 
parasitoid C. flavipes responds to oviposition-induced 
volatiles released by the plants after oviposition by a 
herbivore. HIPVs provide parasitoids with early alert 
cues to enhance their foraging efficacy.
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