

DIVERSITY OF LEAFHOPPERS ON FRUIT CROPS AND WEEDS IN NORTH KASHMIR

SHEIKH AAFREEN REHMAN^{1*}, ISHTIYAQ AHAD¹, RITESH KUMAR², DANISHTA AZIZ¹ AND NAHIDA ANJUM¹

¹Division of Entomology, Faculty of Agriculture, SKUAST Kashmir, Wadura Sopore, Jammu and Kashmir, India ²Department of Entomology, GBPUA&T, Pantnagar Uttarakhand, India *Email: aafreenrehman100@gmail.com (corresponding author)

ABSTRACT

This study analyses the diversity of leafhopper fauna at six locations (Wadura, Arampora, Dangiwacha, Imberzalwari from District Baramulla and Chogul and Chetkak from District Kupwara) occurring on various fruit crops and weeds. Diversity indices such as species diversity index, evenness index, richness index and abundance were computed. These reveal that six species infest these, of which those infesting fruit trees include *Empoasca decipiens, Empoasca fabae, Agallia* spp., *Aconeurella erebrus* and *Exitianus indicus*; and *Stirellus* spp., *Maiestas dorsalis, Macrosteles quadrilineatus, Exitianus indicus* and one plant hopper species viz., *Laodelphax striatellus* infest weeds. Maximum abundance was observed to be of *A. decedens* on fruit trees and *Stirellus* spp. on the weed flora.

Keywords: Kashmir, fruit crops, weeds, leafhoppers, planthoppers, diversity indices, abundance, species diversity, richness,

The present study on the fauna of leafhoppers and planthoppers from Kashmir was done to analyse their diversity. These damage crops by either feeding on plant sap or indirectly serving as vectors for plant pathogens. The Cicadellidae (leafhopper) family causes significant harm to crops (Nielson, 1968). Many species feed on herbaceous or woody dicotyledonous plants, while about 1/3 of the tribes specialize on grass and sedge hosts (Zahniser and Dietrich, 2013). Leafhoppers (Cicadellidae) comprise the largest family of Hemiptera with 24,000 described species in over 2600 genera (Dmitriev, 2021). Planthoppers feed on plant sap and damage the plant tissue by ovipositing that lead to wilting of plants (Reissig et al., 1986). Planthoppers can be differentiated from other 'hoppers' by their Y-shaped anal veins in the forewing, and the thick threesegmented antennae (Bay, 2021). This study focuses on the diversity of these hoppers on fruit trees and weeds in some locations of North Kashmir

MATERIALS AND METHODS

The present study was carried by surveying different fruit crops (apple, grapes and walnut) and weeds (white clover, Bermuda grass and wild mint) at different locations viz. a) Wadura; b) Imberzalwari; c) Dangiwacha d) Arampora e) Chogal and f) Chetkak. Hoppers were collected using sweep nets, light traps and sticky traps, killed in ethyl acetate, and sent to IARI, New Delhi for identification. Species diversity for each crop and location was worked out adding up the total number of species found in each community. Different parameters were used to find diversity such as: a) Relative Abundance: = ni/ N x 100 where, ni = Number of Individuals of a single species and N = Total number of individuals of all species b) Species Diversity Index (H): $-\sum_{i=1}^{S} pi \ln pi$ where H = Shannon-Wiener Biodiversity Index, pi = Relative abundance of each species. ln pi = Natural log of pi. and S = Total number of species. c) Species Richness Index (Ma) = S-1/ 1n N (Pielou, 1975) Where, S = Total number of species collected, N = Total number of individuals in all the species d) Species evenness index: = H/ 1n S where, H = Shannon-Wiener biodiversity Index and S = Total number of species in the community.

RESULTS AND DISCUSSION

The data on the fauna of hoppers on fruit trees and weeds in North Kashmir revealed six species- on fruit trees these include *Assymetrasca decedens, Empoasca decipiens, Empoasca fabae, Agallia* spp., *Aconeurella erebrus* and *Exitianus indicus;* while on weeds these were *Stirellus* spp., *Maiestas dorsalis, Macrosteles quadrilineatus, Laodelphax striatellus, Exitianus indicus* and *Erythria* spp. (Fig. 1-11). Apple was infested by many species, of which the most abundant was *A*. *decedens* on apple, grapes and walnut. Of the ones on weeds viz., white clover, Bermuda grass and wild mint, the most abundant species was *Stirellus* spp. (Table 1).

Crop Apple Wac Ara Ara Dar				MRA								
Apple Wax Imb Ara Ara Dar	Location	Assymetrasca	Empoasca	Empoasca fabao	Agallia spp.	Aconvrella	Exitianus	Z	S	Н	ſ	Ma
Apple wa Imb Ara Dar		o cuananan	necepiens	Juvue	00 11	0 U 1 U 2 O	0 50	5	7	1 757	0.070	5 671
Ara Dar	iui d arzoliwiori	26.26	19.04 77 77	19.04	14.20	14.20	00.70	17	0 <	CC/.1	0.970	2587
Dar	ULZALWALL TIDOFA	47.85	78.57	14.78	14.78			11	t 4	24C.1 777 1	0.000	3 486
	aiwacha	21.21	18.18	21.21	15 15	15 15	9.09	;;	- \c	1 757	0.980	5 714
Cho	gi n ucuu gi i l	23.07	19.23	23.07	15 38	15.38	3.84	26		1 695	0.946	5 693
Che	tkak	26.66	20	20.	13.3	13.3	0.66	15	<u>ی</u> م	1.714	0.956	5.630
Me	an	28.99	22.05	19.30	15.09	69.6	4.86	18.83	5.33	1.589	0.958	4.963
Grapes Wac	lura	36.36	27.27	18.18	18.18	0	0	11	4	1.342	0.968	3.582
Imb	erzalwari	37.5	25	25	12.5	0	0	~	4	1.320	0.952	3.519
Ara	npora	60	20	20	0	0	0	2	9	0.950	0.864	2.378
Dan	giwacha	31.57	26.31	21.05	21.05	0	0	19	9	1.371	0.989	3.660
Cho	gul	33.33	26.66	20	20	0	0	15	9	1.362	0.982	3.630
Che	tkak	37.5	37.5	12.5	12.5	0	0	~	4	1.320	0.952	3.519
Mei	u	39.38	27.12	19.46	14.04	0	0	11	3.83	1.267	0.943	3.381
Walnut Wac	lura	38.88	33.33	27.77	0	0	0	36	С	1.089	0.991	2.720
Imb	erzalwari	40	33.33	26.66	0	0	0	30	С	1.085	0.987	2.705
Ara	npora	35.48	32.25	29.03	0	0	0	31	С	1.085	0.987	2.705
Dan	giwacha	37.20	32.55	30.23	0	0	0	43	ć	1.094	0.996	2.734
Cho	eul	38.46	33.33	28.20	0	0	0	39	5	1.090	0.992	2.727
Che	tkak	37.93	34 40	27.58	0	0	0	29	. "	1 090	0.992	2,703
Me	u	37.99	33.19	28.24		. 1		34.67		1.090	0.992	2.716
		Stirellus spp.	Maiestas	Macrosteles	Laodelphax	Exitianus	Erythria					
			dorsalis	quadrilineatus	striatellus	indicus	spp.					
White clover Wae	lura	50.68	20.54	13.69	10.95	4.10	0	73	5	1.753	0.978	5.671
Imb	erzalwari	59.32	16.94	13.55	10.16	0	0	59	4	1.342	0.968	3.582
Ara	npora	62.26	15.09	13.20	9.43	0	0	53	4	1.277	0.921	3.486
Dan	giwacha	45.97	20.68	13.79	13.79	5.74	0	87	5	1.757	0.980	5.714
Cho	gul	48.10	20.25	13.92	12.65	5.06	0	79	5	1.695	0.946	5.693
Che	tkak	51.51	21.21	13.63	10.60	3.03	0	99	5	1.714	0.956	5.630
Me	n	52.97	19.12	13.63	11.26	2.99	0	69.50	4.66	1.589	0.958	4.963
Bermuda grass Wae	lura	61.40	15.78	12.28	0	5.26	5.26	57	4	1.342	0.968	3.582
Imb	erzalwari	62.5	15	12.5	0	10	0	40	4	1.320	0.952	3.519
Ara	mpora	68.75	12.5	12.5	0	6.25	0	32	4	0.950	0.864	2.378
Dan	giwacha	56.92	18.46	13.84	0	7.69	3.07	65	4	1.371	0.989	3.660
Chc	gul	09	16.66	13.33	0	5	5	60	4	1.362	0.982	3.630
Che	tkak	66.66	14.58	10.41	0	6.25	2.08	48	4	1.320	0.952	3.519
Mei	n	62.71	15.49	12.47	0	6.74	2.56	50.33	4	1.267	0.943	3.381
Wild mint Wat	lura	40.54	32.43	0	27.02	0	0	37	С	1.089	0.991	2.720
Imb	erzalwari	39.39	33.33	0	27.27	0	0	33	С	1.085	0.987	2.705
Ara	npora	38.09	33.33	0	28.57	0	0	21	С	1.085	0.987	2.705
Dan	giwacha	39.53	32.55	0	27.90	0	0	43	ς	1.094	0.996	2.734
Cho	gul	40	32.5	0	27.5	0	0	40	ς	1.090	0.992	2.727
Che	tkak	44.82	31.03	0	24.13	0	0	29	С	1.090	0.992	2.703
Meé	n	40.39	32.95	0	27.06	0	0	33.83	ς	1.090	0.992	2.716

Diversity of leafhoppers on fruit crops and weeds in North Kashmir Sheikh Aafreen Rehman et al.

: 741

quadrilineatus; 9. Laodelphax striatellus; 10. Assymetrasca decedens; 11. Erythria spp

Diversity indices given in Table 1, reveal that among fruit trees, the value of species diversity index for was maximum of 1.589 on apple and 1.090 on walnut, and of the weeds it was maximum of 1.257 on white clover. Species composition and abundance is usually affected by a combination of geographical and environmental factors including vegetation, topography, altitude, climate, habitat and human influence (Wasowska, 2004). Moreover, altitude also plays an important role in the distribution of plant and animal species with large numbers being recorded at lower altitudes which might be related to temperature which decreases with altitude (Alexander and Hillard, 1969). Hopkin's (1919) bioclimatic law states that there is a four day delay in the hatching of insect eggs for every 400 feet increase in altitude which could affect the population density and abundance of species along altitudinal gradient. A greater species diversity also occurs at lower altitudes due to longer seasons (Alexander and Hillard, 1969).

REFERENCES

- Alexander G, Hillard J R. 1969. Altitudinal and seasonal distribution of Ortopterain the rocky mountains of Northern Colorrado. Ecological Monographs 38: 385-430.
- Bay, N. 2021. Fulgoroidea Checklist: Planthoppers.www.nickeybay.com
- Dmitriev, D.A. 2021. World Auchenorrhyncha Database. http://dmitriev. speciesfile.org
- Nielson M W. 1968. The leafhopper vectors of phytopathogenic viruses (Homoptera, Cicadellidae). Taxonomy, biology and virus transmission. United States Department of Agriculture Technical Bulletin No. 1382. 386 pp.
- Reissig W H, Heinrichs E A, Litsinger J A, Moody K, Fiedler L, Mew T W. 1986. Illustrated guide to integrated pest management in rice in tropical Asia. Manila (Philippines): International Rice Research Institute. 411 pp.
- Thirumalai G, Prabakaran S. 2014. A Checklist of Membracidae from India Southern regional centre, Zoological survey of India, Chennai. pp. 1-11.
- Wasowska M. 2004. Impact of humidity and mowing on chrysomelid communities (Coleoptera: Chrysomelidae) in meadows of the Wierzbanowka valley (Pogorze Wielickie hills, Southern Poland). Biologia 59: 601-611.
- Zahniser, J.N. and Dietrich, C.H. 2013. A review of the tribes of Deltocephalinae (Hemiptera: Auchenorrhyncha: Cicadellidae). European Journal of Taxonomy 45: 1-21.

(Manuscript Received: July, 2021; Revised: December, 2021; Accepted: December, 2021; Online Published: April, 2022) Online First in www.entosocindia.org and

indianentomology.org Ref. No. e21181