

EVALUATION OF INSECTICIDES AGAINST SUCKING PESTS OF INDIAN BEAN

DEVASHRAYEE VAIDIK M¹, D R PATEL^{2*} AND P M SANKHLA²

¹Department of Entomology, N M College of Agriculture, Navsari Agricultural University (NAU), Navsari 396450, Gujarat, India ²Department of Entomology, College of Agriculture, NAU, Bharuch 392012, Gujarat, India *Email: patel.devendra2829@yahoo.com (corresponding author)

ABSTRACT

Among the various insecticides evaluated for their field efficacy against sucking pests of Indian bean, the treatments of thiamethoxam 25WG at 0.025%, acetamiprid 20SP at 0.004% and buprofezin 25SC at 0.05% were found to be the most effective against *Aphis craccivora* Koch, *Empoasca kerri* Pruthi and *Bemisia tabaci* Gennadius. While, thiacloprid 21.7SC at 0.012% emerged as the moderately effective. Emamectin benzoate 5SG at 0.002%, indoxacarb 14.5SC at 0.007%, lambda-cyhalothrin 5SC at 0.005% and novaluron 10EC at 0.01% were found to be less effective.

Key words: Lablab purpureus, Aphis craccivora, Empoasca kerri, Bemisia tabaci, acetamiprid, thiamethoxam, buprofezin, thiacloprid, emamectin benzoate, indoxacarb, lambdacyhalothrin, novaluron

Indian bean Lablab purpureus L. is a legume crop widely grown as vegetable or pulse. Insect pests are major constraints in its productivity. It is attacked by a number of insect pests viz., aphid Aphis craccivora Koch.; jassids Empoasca fabae (Harris); E. krameri Ross and Moore and E. kerri Pruthi; pod borer Etiella zinckenella (Treit.); whitefly Bemisia tabaci (Genn.); stem fly, Ophiomyia phaseoli (Tryon); hairy caterpillars Ascotis imparta (Walk.); Bihar hairy caterpillar, Spilosoma obligua (Walk.) etc. Among these, aphids, jassids and whiteflies are the major sucking pests. These pests attack all parts of the plants including pods which result in stunted growth and decreased yield. The honey dew secretion of the aphids provides a suitable media for the development of sooty mould and fungi which ultimately hamper the process of photosynthesis (David and Kumarswami, 1982). Chemical control of A. craccivora, E. kerri and B. tabaci is usally recommended (Garhwal et al., 1994; Dhamaniya et al., 2005; Yadav et al., 2011) but, due to its continuous and enormous use, problems of resistance, deleterious effect on parasitoids and predators, and residue hazards, and environment pollution have arisen. Hence, there is renewed interest in search for new insecticides, and the present study evaluates some of these.

MATERIALS AND METHODS

The field experiments on the evaluation of efficacy of insecticides were conducted at the College Farm, N M College of Agriculture, Navsari Agricultural University, Navsari, Gujarat during 2019-20. The variety GNIB-22 was used and the seeds sown in plots of size 11 m² at 60x 30 cm spacing in 2nd fortnight of October. Eight insecticides viz., thiamethoxam 25WG (1 g/l), thiacloprid 21.7SC (0.6 ml/l), buprofezin 25SC (2.0 ml/ l), acetamiprid 20SP (0.2 g/ l), indoxacarb 14.5SC (0.5 ml/l), emamectin benzoate 5SG (0.4 g/l), lambda-cyhalothrin 5SC (1ml/l) and novaluron 10EC (1 ml/ l) were evaluated along with untreated control with each replicated thrice. These were applied as a foliar spray on the crop using pre-calibrated knapsack sprayer when the pest incidence was sufficiently built up. Second spray was repeated after 15 days of the first spray. The observations were recorded a day before spray as well as 1st, 3rd, 5th, 7th and 14th days after each spray. The observations were made from five randomly selected plants/ plot. Aphis craccivora incidence was observed on three randomly selected twigs (about 10 cm in length). Empoasca kerri and B tabaci were counted from three leaves (from top, middle and bottom). The pooled data were subjected to statistical analysis.

RESULTS AND DISCUSSION

The pooled results over two sprays given in Tables 1-3 reveal that significantly minimum incidence of *A. craccivora* was observed in plots treated with thiamethoxam 25WG (3.57 aphids/ twig) and it was at par with acetamiprid 20SP (3.82 aphids/ twig) and buprofezin 25SC (4.04 aphids/ twig), while novaluron 10EC (12.49 aphids/ twig) was found less effective (Table 1). Chaudhary et al. (2015) reported that

ean
n b
ndia
on]
craccivora
Aphis
against
le 1. Efficacy of insecticides against Aphis craccivora on Indian bean
Efficacy o
<u>.</u>
Table

II. Treatments perior First spray DAS 3DAS 5DAS TDAS 3DAS 5DAS TDAS 3DAS 5DAS TDAS 3DAS 5DAS TDAS 1DAS 3DAS 5DAS TDAS 1DAS 3DAS 5DAS TDAS 3DAS 5DAS TDAS 3DAS 5DAS TDAS 3DAS 5DAS TDAS 1DAS <th>Ē</th> <th></th> <th>J. J. U</th> <th></th> <th></th> <th></th> <th></th> <th>Aean no. of</th> <th>Mean no. of aphids/ twig</th> <th>ig</th> <th></th> <th></th> <th></th> <th></th>	Ē		J. J. U					Aean no. of	Mean no. of aphids/ twig	ig				
spidy IDAS 3DAS 5DAS 7DAS IDDAS 3DAS 5DAS 7DAS TDAS 3DAS 5DAS 7DAS	II.	Treatments	Berore			First spray			-	S	econd spra	V		Pooled
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NO.		spray	1DAS	3DAS	5DAS	TDAS	14DAS	1DAS	0	5DAS	7DAS	14DAS	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	T	Thiamethoxam	4.05	2.33	2.23	2.05	1.85	2.26	1.94	1.88	1.66	1.39	1.08	1.89
		25WG at 0.025%	(16.43)	(5.44)	(4.99)	(4.20)	(3.42)	(5.09)	(3.75)	(3.52)	(2.75)	(1.95)	(1.16)	(3.57)
	T,	Thiacloprid 21.7SC at	4.13	3.01	2.96	2.84	2.65	2.94	2.68	2.54	2.36	2.16	1.84	2.61
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	0.012%	(17.03)	(9.04)	(8.74)	(8.08)	(7.00)	(8.66)	(7.16)	(6.48)	(5.57)	(4.69)	(3.38)	(6.84)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	T,	Buprofezin 25SC	3.97	2.41	2.35	2.20	2.02	2.35	2.02	1.91	1.78	1.58	1.25	2.01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	at0.05%	(15.79)	(5.82)	(5.54)	(4.86)	(4.08)	(5.52)	(4.08)	(3.63)	(3.19)	(2.48)	(1.55)	(4.04)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$T_{_4}$	Acetamiprid 20SP at	4.12	2.37	2.28	2.13	1.94	2.30	1.98	1.89	1.77	1.54	1.13	1.95
arb 14.5SC at 3.95 3.73 3.68 3.59 3.53 3.58 3.36 3.29 3.13 3.00 fills Benzoate 3.84 3.63 3.59 3.45 3.35 3.52 3.30 3.22 3.08 2.92 (15.58) (13.57) (12.91) (12.46) (12.79) (11.31) (10.84) (9.83) (8.98) (0.02% (14.72) (13.18) (12.88) (11.94) (11.22) (12.36) (10.87) (10.36) (9.46) (8.50) (0.05% (15.76) (13.51) (13.18) (12.46) (11.22) (12.36) (10.87) (10.36) (9.46) (8.50) (0.05% (15.76) (13.51) (13.18) (12.46) (11.44) (12.56) (11.08) (10.54) (9.61) (8.66) (0.1005\% (15.76) (15.76) (15.31) (13.51) (13.73) (13.73) (13.20) (11.81) (11.85) (10.34) (9.56) (0.61) (0.67) (0.16 (0.14) (16.56) (15.41) (14.61) (13.73) (13.20) (11.81) (11.85) (10.34) (9.56) (11.697) (0.19 0.18 0.19 0.16 0.14 0.17 0.14 (12.56) (11.76) (15.94) (15.55) (14.38) (12.72) (0.14 (12.76) (15.94) (15.55) (14.38) (12.72) (0.14 (12.76) (15.94) (15.55) (14.38) (12.72) (0.14 (12.76) (15.94) 0.18 0.17 0.14 (12.76) (15.94) (15.55) (14.38) (12.72) (0.05) (17.76) (15.94) (15.55) (14.38) (12.72) (0.14 (12.71) 0.18 0.19 0.18 0.19 0.16 0.14 0.17 0.14 0.17 0.14 0.17 0.14 (12.56) (17.76) (15.94) (15.55) (14.38) (12.72) (0.05) (18 \times 1) 0.18 0.19 0.16 0.14 0.16 0.14 0.16 0.14 0.16 0.14 0.16 0.14 0.16 0.14 0.16 0.14 0.16 0.14 0.16 0.14 0.16 0.14 0.16 0.14 0.16 0.14 0.16 0.14 0.17 0.14 (17.76) (15.94) (15.55) (14.38) (12.72) (0.05) (18 \times 1) 0.18 0.19 0.16 0.14 0.17 0.14 0.17 0.14 0.17 0.14 0.16 0.16 0.14 0.18 0.17 0.14 0.17 0.14 0.16 0.16 0.14		0.004%	(16.95)	(5.62)	(5.19)	(4.56)	(3.79)	(5.27)	(3.92)	(3.57)	(3.12)	(2.36)	(1.27)	(3.82)
tin Benzoate 3.84 3.63 3.59 3.45 3.35 3.52 3.30 (15.58) (13.189) (13.57) (12.91) (12.46) (12.79) (11.31) (10.84) (9.83) (8.98) (10.02% (14.72) (13.18) (12.88) (11.94) (11.22) (12.36) (10.87) (10.36) (9.46) (8.50) (005% (15.76) (13.51) (13.18) (12.46) (11.44) (12.56) (11.08) (10.54) (9.61) (8.66) (005% (15.76) (13.51) (13.18) (12.46) (11.44) (12.56) (11.08) (10.54) (9.61) (8.66) (01.106) (16.40) (16.56) (15.41) (14.61) (13.73) (13.20) (11.81) (11.85) (10.34) (9.56) (11.640) (16.56) (15.41) (14.61) (13.73) (13.20) (11.81) (11.85) (10.34) (9.56) (11.640) (16.56) (15.41) (14.61) (13.73) (13.20) (11.81) (11.85) (10.34) (9.56) (11.640) (16.56) (15.41) (14.61) (13.73) (13.20) (11.81) (11.85) (10.34) (9.56) (11.640) (16.97) (21.63) (20.67) (19.21) (17.86) (17.76) (15.94) (15.55) (14.38) (12.72) (11.81) (11.85) (10.34) (9.56) (18.71) 0.19 0.18 0.19 0.16 0.14 0.17 0.14 0.17 0.14 0.17 0.14 (12.55) (14.38) (12.72) (0.05) (18.71)	Ţ	Indoxacarb 14.5SC at	3.95	3.73	3.68	3.59	3.53	3.58	3.36	3.29	3.13	3.00	2.70	3.37
tin Benzoate 3.84 3.63 3.59 3.45 3.35 3.52 3.30 3.22 3.08 2.92 0.02% (14.72) (13.18) (12.88) (11.94) (11.22) (12.36) (10.87) (10.36) (9.46) (8.50) -cyhalothrin 3.97 3.67 3.63 3.53 3.53 3.54 3.10 2.94 0.05% (15.76) (13.51) (13.18) (12.46) (11.44) (12.56) (11.08) (10.54) (9.61) (8.66) 0.10EC at 4.05 4.07 3.92 3.82 3.70 3.63 3.43 3.44 3.21 3.09 0.10EC at 4.12 4.65 4.55 4.38 4.22 4.21 3.99 3.94 3.79 3.56 (Treated with 4.12 4.65 0.18 0.16 0.14 0.18 0.17 0.14 0.17 0.14 0.19 0.18 0.19 0.16 0.14 0.18 0.1776 (15.94) (15.55) (14.38) (12.72) (16.77) $(P \times T)$,	0.007%	(15.58)	(13.89)	(13.57)	(12.91)	(12.46)	(12.79)	(11.31)	(10.84)	(9.83)	(8.98)	(7.30)	(11.39)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Τ,	Emamectin Benzoate	3.84	3.63	3.59	3.45	3.35	3.52	3.30	3.22	3.08	2.92	2.42	3.26
	2	5SG at 0.002%	(14.72)	(13.18)	(12.88)	(11.94)	(11.22)	(12.36)	(10.87)	(10.36)	(9.46)	(8.50)	(5.85)	(10.63)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	T_7	Lambda-cyhalothrin	3.97	3.67	3.63	3.53	3.38	3.54	3.33	3.24	3.10	2.94	2.66	3.31
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		5SC at 0.005%	(15.76)	(13.51)	(13.18)	(12.46)	(11.44)	(12.56)	(11.08)	(10.54)	(9.61)	(8.66)	(7.07)	(11.01)
	\mathbf{I}_{s}	Novaluron 10EC at	4.05	4.07	3.92	3.82	3.70	3.63	3.43	3.44	3.21	3.09	2.87	3.53
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0.01%	(16.40)	(16.56)	(15.41)	(14.61)	(13.73)	(13.20)	(11.81)	(11.85)	(10.34)	(9.56)	(8.23)	(12.49)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	T_9	Control (Treated with	4.12	4.65	4.55	4.38	4.22	4.21	3.99	3.94	3.79	3.56	3.27	4.07
0.19 0.18 0.19 0.16 0.14 0.18 0.17 0.14 0.17 0.14 (P×T)		water)	(16.97)	(21.63)	(20.67)	(19.21)	(17.86)	(17.76)	(15.94)	(15.55)	(14.38)	(12.72)	(10.69)	(16.56)
)		$S.E.m \pm$	0.19	0.18	0.19	0.16	0.14	0.18	0.17	0.14	0.17	0.14	0.13	0.04
NS 0.55 0.57 0.48 0.44 0.55 0.51 0.41 0.52 0.43 		$S.E.m \neq (P \times T)$	ı	ı	ı	·	'	ı	•	ı	•	ı		0.06
		C.D ($p=0.05$)	NS	0.55	0.57	0.48	0.44	0.55	0.51	0.41	0.52	0.43	0.38	0.13
		C.D ($p=0.05$) ($P \times T$)	'		I	ı	'	I		ı	ı	ı	I	NS

;							INICALI IIO.	venteep in	ICAL				
II.	Treatments	Belore			First spray	1				Second spray			Pooled
o.		spiay	1DAS	3DAS	5DAS	7DAS	14DAS	1DAS	3DAS	5DAS	7DAS	14DAS	
	Thiamethoxam 25WG	2.93	1.91	1.95	1.88	1.73	1.92	1.68	1.73	1.56	1.17	0.95	1.67
	at 0.025%	(8.58)	(3.65)	(3.82)	(3.55)	(2.98)	(3.67)	(2.83)	(2.99)	(2.42)	(1.36)	(0.90)	(2.80)
	Thiacloprid 21.7SC at	2.91	2.32	2.37	2.31	2.22	2.31	2.17	2.19	2.04	1.79	1.49	2.14
	0.012%	(8.47)	(5.37)	(5.63)	(5.35)	(4.94)	(5.35)	(4.71)	(4.82)	(4.15)	(3.22)	(2.22)	(4.60)
~	Buprofezin 25SC	2.86	2.30	2.34	2.29	2.20	2.29	2.13	2.17	1.95	1.72	1.38	2.10
_	at0.05%	(8.16)	(5.29)	(5.47)	(5.28)	(4.86)	(5.25)	(4.55)	(4.72)	(3.82)	(2.96)	(1.90)	(4.41)
	Acetamiprid 20SP at	2.83	1.89	1.91	1.84	1.71	1.88	1.66	1.69	1.51	1.10	0.88	1.63
	0.004%	(7.99)	(3.56)	(3.67)	(3.39)	(2.92)	(3.56)	(2.76)	(2.85)	(2.29)	(1.22)	(0.77)	(2.67)
10	Indoxacarb 14.5SC at	2.88	2.74	2.78	2.74	2.70	2.74	2.63	2.67	2.52	2.31	2.09	2.61
	0.007%	(8.29)	(7.51)	(7.74)	(7.54)	(7.27)	(7.52)	(6.92)	(7.12)	(6.35)	(5.34)	(4.38)	(6.82)
	Emamectin Benzoate	2.90	2.71	2.74	2.71	2.66	2.72	2.60	2.65	2.47	2.30	2.09	2.58
	5SG at 0.002%	(8.39)	(7.36)	(7.54)	(7.34)	(7.06)	(7.41)	(6.78)	(7.02)	(6.08)	(5.29)	(4.35)	(6.67)
-	Lambda-cyhalothrin	2.82	2.77	2.80	2.75	2.71	2.78	2.65	2.71	2.56	2.36	2.15	2.64
	5SC at 0.005%	(7.95)	(7.65)	(7.87)	(7.59)	(7.34)	(7.73)	(7.04)	(7.34)	(6.55)	(5.59)	(4.64)	(66.9)
~	Novaluron 10EC at	2.87	2.80	2.83	2.78	2.75	2.80	2.69	2.73	2.56	2.41	2.19	2.67
	0.01%	(8.23)	(7.86)	(8.00)	(7.75)	(7.56)	(7.88)	(7.23)	(7.49)	(6.55)	(5.81)	(4.80)	(7.15)
~	Control (Treated with	2.84	2.99	3.03	2.99	2.94	2.99	2.84	2.88	2.86	2.69	2.53	2.89
	water)	(8.10)	(8.96)	(9.16)	(8.92)	(8.64)	(8.98)	(8.08)	(8.34)	(8.20)	(7.25)	(6.40)	(8.36)
	$S.E.m \pm$	0.12	0.13	0.11	0.12	0.14	0.12	0.14	0.12	0.09	0.11	0.10	0.03
	$S.E.m \pm (P \times T)$	'		•		'		'	ı	ı	'	ı	0.05
	C.D (p=0.05)	NS	0.39	0.34	0.36	0.40	0.37	0.41	0.36	0.27	0.34	0.32	0.09
	C.D ($p=0.05$) ($P \times T$)	ı			ı		ı		'	ı	'	ı	NS

Table 2. Efficacy of insecticides against Empoasca kerri on Indian bean

a tabaci on Indian
tabaci
semisia
against <i>E</i>
r of insecticides against l
Table 3. Efficacy

bean

E		c f				W	Mean no. of whitefly/ leaf	whitefly/ le	af				
Ir. No	Treatments	Betore			First spray			6	S	Second spray	y		Pooled
.0N		bide	1DAS	3DAS	5DAS	7DAS	14DAS	1DAS	3DAS	5DAS	7DAS	14DAS	
Ľ.	Thiamethoxam 25WG	2.73	2.11	2.12	1.84	1.63	1.86	1.47	1.48	1.39	1.18	1.01	1.63
	at 0.025%	(7.45)	(4.47)	(4.48)	(3.39)	(2.68)	(3.46)	(2.16)	(2.18)	(1.92)	(1.39)	(1.03)	(2.68)
Τ,	Thiacloprid 21.7SC at	2.68	2.53	2.56	2.31	2.13	2.30	1.99	2.00	1.92	1.74	1.54	2.12
1	0.012%	(7.18)	(6.40)	(6.55)	(5.35)	(4.54)	(5.27)	(3.97)	(4.01)	(3.67)	(3.03)	(2.36)	(4.51)
Ţ	Buprofezin 25SC	2.75	2.14	2.14	1.86	1.70	1.90	1.50	1.52	1.45	1.22	1.07	1.67
r	at0.05%	(7.54)	(4.59)	(4.58)	(3.47)	(2.89)	(3.62)	(2.24)	(2.30)	(2.10)	(1.48)	(1.15)	(2.82)
$T_{_{4}}$	Acetamiprid 20SP at	2.71	2.09	2.10	1.83	1.62	1.83	1.40	1.43	1.33	1.16	0.94	1.60
-	0.004%	(7.36)	(4.38)	(4.41)	(3.36)	(2.62)	(3.36)	(1.96)	(2.04)	(1.77)	(1.34)	(0.60)	(2.57)
T,	Indoxacarb 14.5SC at	2.82	2.73	2.79	2.65	2.54	2.63	2.40	2.43	2.32	2.11	1.92	2.47
ć	0.007%	(7.97)	(7.43)	(7.80)	(7.05)	(6.47)	(6.93)	(5.76)	(5.92)	(5.37)	(4.47)	(3.67)	(6.11)
T,	Emamectin Benzoate	2.76	2.72	2.77	2.63	2.53	2.62	2.38	2.42	2.32	2.10	1.89	2.45
>	5SG at 0.002%	(7.64)	(7.38)	(7.69)	(6.93)	(6.40)	(6.88)	(5.66)	(5.84)	(5.37)	(4.42)	(3.56)	(6.03)
T_7	Lambda-cyhalothrin	2.80	2.76	2.81	2.67	2.58	2.64	2.45	2.51	2.35	2.16	2.00	2.51
	5SC at 0.005%	(7.84)	(7.60)	(7.93)	(7.12)	(6.67)	(7.00)	(6.03)	(6.28)	(5.54)	(4.65)	(4.00)	(6.31)
T_s	Novaluron 10EC at	2.70	2.76	2.83	2.72	2.61	2.68	2.47	2.52	2.37	2.21	2.05	2.54
I	0.01%	(7.30)	(7.65)	(8.00)	(7.41)	(6.83)	(7.16)	(6.11)	(6.37)	(5.62)	(4.87)	(4.22)	(6.46)
T_9	Control (Treated with	2.79	2.90	3.01	3.04	2.96	3.00	2.85	2.89	2.82	2.71	2.46	2.88
	water)	(7.78)	(8.45)	(9.08)	(9.24)	(8.47)	(0.00)	(8.16)	(8.39)	(7.95)	(7.34)	(6.04)	(8.31)
	S.E.m ±	0.13	0.13	0.12	0.10	0.10	0.10	0.12	0.12	0.13	0.10	0.08	0.06
	$S.E.m \pm (P \times T)$		ı	1	'	'		1	ı		ı	'	0.04
	C.D (p= 0.05)	NS	0.38	0.36	0.32	0.32	0.30	0.37	0.37	0.38	0.31	0.25	0.20
	C.D at 5 % (P \times T)							•					0.12
DAS =	DAS = Days after spraying; Figure in parentheses are original value whereas, those outside are $\sqrt{x} + 0.5$ transformed values	parentheses	are origina	ll value whe	reas, those o	utside are $$	x + 0.5 trans	sformed valu	les.				

Evaluation of insecticides against sucking pests of Indian bean 791 Devashrayee Vaidik M et al.

imidacloprid followed by acetamiprid were superior; Choudhary et al. (2017) showed that thiamethoxam (0.005%) was the most effective. As regards the incidence of E. kerri, acetamiprid 20SP (2.67 jassids/ leaf) followed by thiamethoxam 25WG (2.80 jassids/ leaf) were the best (Table 2); buprofezin 25SC and thiacloprid 21.7SC were the next best. Chaudhary et al. (2015) found that imidacloprid followed by acetamiprid were superior; while Singh et al. (2019) showed that acetamiprid (0.004%) was the most effective in green gram. Meena et al. (2020) reported that imidacloprid > thiamethoxam > acetamiprid were the most effective in green gram. The incidence of *B. tabaci* was significantly reduced with acetamiprid 20SP (2.57 whiteflies/ leaf) and it was at par with thiamethoxam 25WG (2.68 whiteflies/ leaf); it was followed by buprofezin 25SC and thiacloprid, while was the least effective (Table 3). These results agree with those of Chaudhary et al. (2015) that incidence of whitefly was significantly reduced with acetamiprid. Kukvaya et al. (2018) revealed that thiamethoxam 25 WG @ 0.005 was highly effective against whitefly in moth bean. Singh and Singh (2018, 2019) observed that acetamiprid was the most effective in green gram.

AUTHOR CONTRIBUTION STATEMENT

All authors equally contributed.

CONFLICT OF INTEREST

No conflict of interest.

REFERENCES

- Chaudhari A J, Korat D M, Dabhi M R. 2015. Bioefficacy of newer insecticides against major insect pests of Indian bean, *Lablab purpureus* L. Karnataka Journal of Agricultural Sciences 28(4): 616-619.
- Choudhary A L, Hussain A, Choudhary M D, Samota R. Jat S. 2017. Bioefficacy of newer insecticides against aphid, *Aphis craccivora* Koch on cowpea. Journal of Pharmacognosy and Phytochemistry 6(4): 1788-1792.
- David B V, Kumaraswami T. 1982. Elements of Economic Entomology Popular Book Depot, Madras, 173 pp.
- Dhamaniya B, Sharma J K, Kumawat K C. 2005. Bio-efficacy of insecticides against sucking insect pests of moth bean, *Vigna* aconitifolia. Annals of Plant Protection Sciences 13(1): 91-93.
- Garhwal S N, Verma S K, Sharma J K. 1994. Field efficacy of different insecticide against cowpea aphid, *Aphis craccivora* Koch. Annals of Arid Zone 33(2): 159-160.
- Kukvaya D D, Jakhar B L, Chaudhari S J, Patel B C. 2018. Bio-efficacy of insecticides against sucking insect pests of moth bean, *Vigna* aconitifolia (Jacq.) Marechal. Journal of Entomology and Zoology Studies 6(5): 2227-2230.
- Meena R K, Meena R K, Singh Uadal, Meena M L, Meena B L, Anokhe A. 2020. Evaluation of insecticides against leaf hopper *Empoasca kerri* Pruthi in green gram. Indian journal of Entomology 82(4): 768-770.
- Singh M, Bairwa D K, Dadrwal B K, Chauhan J. 2019. Relative efficacy of new generation insecticides against sucking insect pests of green gram. Journal of Pharmacognosy and Phytochemistry 8(2): 882-886.
- Singh S K, Singh P S. 2018. Efficacy of some insecticides and biopesticides against whitefly, *Bemisia tabaci* on green gram. Journal of Experimental Zoology India 21(1): 241-246.
- Yadav S R, Kumawat K C, Khinchi S K. 2011. Efficacy of new insecticide molecules and bioagents against sucking insect pests of cluster bean, *Cyamopsis tetragonoloba* (Linn.) Taub. Journal of Plant Protection and Environment 8(1): 115-122.

(Manuscript Received: July, 2021; Revised: January, 2022; Accepted: January, 2022; Online Published: March, 2022) Online First in www.entosocindia.org and indianentomology.org Ref. No. e21164