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ABSTRACT

Cotesia vestalis (Haliday) is the key biological control agent of Plutella xylostella L, the diamond back 
moth. This study investigated the influence of induced chemical defenses in cabbage (Brassica oleracea) 
on the olfactory responses of C. vestalis females. Herbivores trigger plants to release more volatile organic 
compounds (VOCs), attracting natural enemies. This study hypothesized that C. vestalis would be more 
attracted to specific volatiles emitted from differently herbivore-damaged cabbage compared to undamaged 
plants. Y-olfactometer experiments revealed that C. vestalis females were significantly more attracted to 
volatiles emitted by P. xylostella-damaged cabbage. This preference was also observed for plants damaged 
by Crocidolomia spp. Gas chromatography analysis confirmed qualitative and quantitative differences in 
volatile profiles between damaged and undamaged cabbage. Findings suggest that induced plant volatiles 
play a critical role in attracting C. vestalis to host plants, highlighting the potential for using plant-mediated 
attraction to enhance biological control strategies.

Key words: Cotesia vestalis, Plutella xylostella, parasitoids, herbivorous, plant volatiles, Brassica, Y-olfactometer, 
screen cage, bioassays, plant mediated attraction, IPM, olfactory responses

Plants have evolved sophisticated chemical 
defenses, continuously producing defensive compounds 
regardless of herbivore attack (Parsons, 2021). When 
attacked, plants release volatile organic compounds 
(VOCs) that attract natural enemies like parasitic wasps 
and predators (Dicke, 1999). These VOC emissions 
can vary depending on the attacking herbivore species, 
allowing plants to tailor their defenses (Dicke, 1999; 
Bruinsma and Dicke, 2008). VOCs released by plants 
serve as a chemical signal that attracts parasitoids to 
the location of their host insects (Saini et al., 2019; 
Takabayashi and Shiojiri, 2019; Blažytė-Čereškienė 
et al., 2022). By attracting herbivore enemies, these 
plant-induced volatiles offer protection against 
herbivory (Shiojiri et al., 2010; Dicke, 1999). While 
individual compounds can attract natural enemies, 
blends of numerous compounds are often used in 
nature (Takabayashi et al., 2006). The combination of 

relatively common VOCs in a particular way creates a 
specific blend that acts as a signal for target acquisition 
by parasitoids (Blažytė-Čereškienė et al., 2022). The 
structure of these blends can be complex and specific, 
varying qualitatively and quantitatively depending on 
the plant and herbivore species (Pierre et al., 2011).

The intricate olfactory system of insects governs 
behaviour critical for their survival and reproduction. 
This system plays a pivotal role in enabling insects 
to detect food sources, avoid unsuitable hosts, select 
suitable oviposition sites, locate mates, and even evade 
natural enemies (Cao et al., 2020; Wang et al., 2022). 
Cotesia vestalis, a specialist solitary endoparasitoid 
of the diamond back moth (DBM) Plutella xylostella, 
is a major global pest of cruciferous plants (Shi et al., 
2008). While studies have shown that C. vestalis is 
attracted to volatiles emitted from infested host plants 
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(Furlong et al., 2013), the influence of damage types 
on the parasitoid's olfactory response remains largely 
unexplored. This study investigates the olfactory 
responses of C. vestalis females to volatiles emitted 
from cabbage plants (Brassica oleracea) that have 
been subjected to four different damage types. It was 
hypothesize that C. vestalis will exhibit a greater 
attraction to specific volatiles emitted from plants 
damaged by herbivores compared to undamaged plants. 
The findings of this study will contribute to a better 
understanding of the role of plant volatiles in mediating 
the interactions between herbivores, plants, and 
parasitoids, with potential implications for enhancing 
biological control strategies.

MATERIALS AND METHODS

Cabbage plants (Brassica oleracea L.) were 
cultivated in a greenhouse for 4-5 weeks to the 6-leaf 
stage. Seedlings were grown in pots with soil, watered 
twice daily, and fertilized less than three times at 
two-week intervals. Adults and larvae of Plutella 
xylostella were collected from small farms near Kuala 
Lumpur, Malaysia. Mass rearing occurred on potted 
cabbage plants in a controlled environment (27± 
2°C, 60± 5% RH, 16 hr photoperiod) using small 
netting cages (Abuzid et al., 2014a). Adults were fed 
a 20% honey and newly hatched larvae received fresh 
cabbage plants. Field-collected larvae (both parasitized 
and non-parasitized) were used to establish a stock 
colony of the parasitoid wasp C. vestalis (Kermani et 
al., 2014). Briefly larvae were housed with cabbage 
leaves in cages and monitored for parasitoid cocoon 
formation. Emerged wasps were fed a honey solution. 
Larvae of cabbage leaf webber Crocidolomia pavonana 
were collected from fields near Serdang, Malaysia. 
Rearing followed the methods used for DBM (Abuzid 
et al., 2014a). The aphid Lipaphis erysimi Kaltenbach 
(Homoptera: Aphididae) was collected from Chinese 
mustard plants and reared on the same plant species in 
screened cages under controlled conditions (27±2°C, 
60± 5% RH).

Y-Tube olfactometer assay was used to test the 
response of female C. vestalis to volatile compounds 
from cabbage plants (Girling et al., 2011). Briefly, 
females were released into the Y-tube and allowed 
to choose between airflow-carrying volatiles from 
undamaged plants or plants infested with DBM larvae, 
C. pavonana larvae, aphids, or mechanically damaged. 
The effect of cabbage plant volatiles on C. vestalis 
was evaluated in a screen cage experiment at a UKM 
University greenhouse. Cabbage plants at the 6-leaf 

stage were damaged mechanically or infested with 
DBM larvae, C. pavonana larvae, or aphids (details 
on damage levels provided in [reference for damage 
levels]). Damaged and undamaged plants were placed 
in screen cages, and mated C. vestalis females were 
released. The number of wasps found on each plant 
was counted at various time points (1, 2, 3, 6, and 
24 hr) to assess their preference. Volatile compounds 
from undamaged and damaged cabbage plants were 
collected using headspace solid-phase microextraction 
(HS-SPME) following established protocols (Risticevic 
et al., 2010). Briefly, plants were enclosed in jars for 
one hour, and volatiles were absorbed into an SPME 
fibre. Collected volatiles were analyzed using gas 
chromatography-mass spectrometry (GC-MS) with a 
DB-5 msec column (Saad et al., 2014). Compounds 
were identified by comparison of the mass spectra with 
those available in the library of the GC-MS system of 
the National Institute of Standards and Technology 
(NIST). Data were pooled and transformed (x + 0.5) 
to normalize and handle zero values. Parametric tests, 
including one-way ANOVA and paired t-tests, were 
used to compare VOC profiles across damage types, 
as well as to analyze data from the Y-tube and screen 
cage experiments to determine significant differences 
in C. vestalis behaviour. All analyses were conducted 
in Minitab version 16. 

RESULTS AND DISCUSSION

Cotesia vestalis females exhibited differential 
olfactory responses to volatile organic compounds 
(VOCs) emitted by cabbage damaged by various 
herbivores. In a Y-tube olfactometer assay, naive 
parasitoids were significantly attracted to VOCs from 
cabbage plants damaged by their specialist host DBM 
larvae, compared to undamaged plants. Similarly, C. 
vestalis females showed a preference for VOCs from 
plants damaged by Crocidolomia pavonana larvae, 
another chewing herbivore. Conversely, no significant 
attraction was observed towards plants damaged by 
aphids or mechanically damaged plants (Fig. 1). These 
findings align with previous studies demonstrating 

Fig. 1. Cotesia vestalis females attracted to VOCs from 
undamaged (control) (Brassica oleracea)  

and DBM, crocidolomia, aphids, and mechanical damaged 
cabbage plants tested in Y-olfactometer
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that herbivore-induced plant volatiles (HIPVs) play 
a crucial role in parasitoid host location (Geervliet et 
al., 1994). The qualitative and quantitative differences 
in VOC profiles triggered by herbivore feeding likely 
provide crucial information for C. vestalis to distinguish 
between host and non-host infested plants, as well as 
undamaged ones (Paré and Tumlinson, 1999). Yang 
et al. (2016) identified specific plant volatiles like 
trans-2-hexenal, benzaldehyde, β-caryophyllene, and 
cis-3-hexenol as attractive to C. vestalis. This research 
aligns with the broader understanding that a diverse 
array of plant volatiles plays a crucial role in insect 
foraging behaviour (Debnath et al., 2023; Franco et 
al., 2021). Plant volatiles are essential for egg-laying 
female insects to locate and identify suitable host plants, 
highlighting the critical role these chemical signals play 
in host plant specialization (Lin et al., 2024).

Screen cage experiments corroborated the 
olfactometer results, with C. vestalis females spending 
significantly more time on DBM-damaged plants 
compared to other treatments (Table 1, Fig. 2). This 
suggests that while VOCs play a significant role in the 
initial host location, other cues like contact pheromones 
from DBM larvae might further guide the parasitoid's 
behaviour within proximity to the host (Abuzid et al., 
2014a; Abuzid et al., 2014b). GC-MS analysis revealed 
distinct volatile profiles for each damage type. Notably, 

DBM and Crocidolomia-damaged plants displayed 
higher quantities of specific hydrocarbons and fatty 
acids. These findings further highlight the distinct 
VOC profiles elicited by different types of damage. 
Notably, DBM infestation led to a significant increase 
in hexacosane, while mechanical damage significantly 
increased hexacosane and triacontane. Interestingly, 
aphid infestation resulted in a decrease in oxalic acid 
and heptadecane, suggesting that the type of damage 
influences the specific VOCs produced. These specific 
compounds, previously implicated in host recognition 
by parasitoids (O'Hara et al., 1996; Kumazaki et al., 
2000), likely contribute to the attraction of C. vestalis. 
Interestingly, C. vestalis responded similarly to VOCs 
from DBM and Crocidolomia larvae in the olfactometer 
assay, but showed a preference for DBM-damaged 
plants in the screen cage experiment. This discrepancy 
suggests that additional cues, potentially from host 
body odours, frass, or ozone, might be crucial for final 
host discrimination during close-range encounters 
(Blande, 2021; Turlings et al., 1991). Ayelo et al. (2021) 
introduces an interesting complexity, suggesting that 
high doses of HIPVs can sometimes act as repellents 
in addition to their attractive properties.

In various cases, the defense compounds are 
released through different pathways. Present findings 
on the significant increase in VOC emissions after 
herbivore damage align with prior research (Heil et 
al. 2008; Allmann and Baldwin, 2010). These studies 
demonstrate that intact leaves release minimal amounts 
of green leaf volatiles (GLVs), but mechanical damage 
or herbivore feeding significantly triggers the release 
of these compounds, making them the initial surge 
in VOCs following herbivore attack. Shiojiri (2000) 
demonstrated that in C. vestalis females' specific 
attraction to DBM-infested cabbage plants, a synthetic 
blend of four key HIPVs (Z)-3-hexenyl acetate, 
α-pinene, sabinene, and n-heptanal played a key role and 
it has been successfully used to attract these parasitoids 
(Shiojiri, 2010; Ozawa et al., 2018). This highlights the 
potential for utilizing HIPVs for the development of 
environmentally friendly pest management strategies. 
GC-MS analysis revealed distinct VOC fingerprints in 
cabbage responding to diverse damage (insect feeding, 
mechanical injury). While total VOC quantity remained 
similar, specific compounds varied. Undamaged plants 
boasted a rich VOC profile, while those damaged by 
different herbivores or mechanically emitted unique 
blends (Table 2). These results align with earlier work 
(Alborn et al., 1997). Notably, defensive glucosinolates 
(GSLs), known for their sulphur content (Tripathi 

Fig. 2. Mean (±SE) of total numbers of Cotesia vestalis 
females found on cabbage (Brassica oleracea)  

damaged and control plants after 24 hr under free choice in 
Screen Cage bioassay, using two-way ANOVA

Fig. 1. Cotesia vestalis females attracted to VOCs from undamaged (control) (Brassica oleracea) 
and DBM, crocidolomia, aphids, and mechanical damaged cabbage plants tested in Y-
olfactometer 
 
Table 1. Results of two-way ANOVA for mean numbers of Cotesia vestalis females found on 
cabbage (Brassica oleracea) plants at different times after release in screen-cage bioassay. 
 

Source df Sum of squares F-value P-value 
Time 4 52.81 11.03 0.001 
Treatments 4 300.93 15.72 0.000 
Time x Treatments 4 79.16 4.13 0.005 
Error 65 311.10   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 2. Mean (±SE) of total numbers of Cotesia vestalis females found on cabbage (Brassica 
oleracea) damaged and control plants after 24 hours under free choice in Screen Cage bioassay, 
using two-way ANOVA 
 
Table 2. GC-MS analysis of changes in some key volatile compounds in B. oleracea in response 
to DBM, crocidolomia, aphids, and mechanical damage (*) p-values are significant 

Compound RT (min) Control 
(DBM) 

DBM Control 
(Crocidolo
mia) 

Crocidolomia Contr
ol 
(Aphi
d) 

Aphid Control 
(Mechanically
) 

Mechanicall
y 

Squalene 56.5 0.58± 0.2 0.38± 
0.038 

0.58± 0.2 0 0.58±
0.2 

0.37± 
0.3 

0.58± 0.2 0.2± 0.2 

Hexadecanoic acid 34.8 0 0. 0
.
4 

0 1. 1.8
4 

0 7.5± 4 0 0 

Oxalic acid 29 0.56± 0.012 0.03± 
0.005* 

0.56± 
0.012 

0.12± 0.1 0.56±
0.012 

0* 0.56± 0.012 0.05± 0.01* 

1,2-
Benzenedicarboxylic 

46.5 2.5± 0.67 2.2±2.2 2.5± 0.67 2.47± 1.2 2.5± 
0.67 

4.56±1.9 2.5± 0.67 2.2± 2.2 
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Table 1. Two-way ANOVA for mean numbers of 
Cotesia vestalis females found on 

Brassica oleracea (screen-cage bioassay)

Source df Sum of squares F-value P-value
Time 4 52.81 11.03 0.001
Treatments 4 300.93 15.72 0.000
Time x 
Treatments 4 79.16 4.13 0.005

Error 65 311.10
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and Mishra, 2007) were not detected, possibly due 
to sampling limitations (Olsen and Sørensen, 1981). 
The findings of this study highlight the complexity 
of plant stress responses and the crucial role of VOCs 
in mediating interactions with herbivores and natural 
enemies, potentially attracting or repelling parasitoids 
(Caarls et al., 2021; Conboy et al., 2020). 

In conclusion, this study demonstrates that C. vestalis 
females effectively utilize herbivore-induced plant 
volatiles for host location. The specific composition 
of VOCs emitted by damaged plants, particularly the 
presence of specific hydrocarbons and fatty acids, plays 
a significant role in attracting parasitoids. While VOCs 
provide initial cues for host location, additional contact 
cues from the host itself might be crucial for final host 
discrimination.
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