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ABSTRACT

The present study proposes a methodology utilizing machine learning and deep learning techniques for 
stored grain insect pest classification. Relevant morphological features extracted from captured pest 
images were fed to K-nearest neighbors (KNN), Support Vector Machine (SVM), Convolutional Neural 
Network (CNN), and Naïve Bayes (NB) algorithms. The effectiveness of the proposed approach was 
evaluated using a comprehensive dataset compiled with images of various stored grain insect pests. The 
order of classification accuracy was NB < KNN < SVM < CNN where KNN achieved 76% accuracy, SVM 
exhibiting 81% accuracy, CNN achieving 98% accuracy, and NB achieving 33% accuracy. Though CNN 
required more computation time for classification, better accuracy was achieved and this could be utilized 
to identify the insects infesting stored food grains. The intelligent classification provides a valuable tool 
for identifying and differentiating stored grain insect pests, the primary step in IPM.
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Globally 70% of the human population depends on 
agriculture for their income (Devipriya et al., 2022). 
Agricultural productivity is affected by various factors, 
including the grain loss which is estimated to be 25% 
whereas 6% of it happens during storage (Shankar 
and Adrol, 2012). Though India is the world’s largest 
producer of pulses, its productivity is low because of 
biotic and abiotic stresses (Kumari et al., 2022). Technical 
care in grain storage is essential to gain maximum profit, 
as there may be invasion of insect pests, pathogens and 
rodents. Stored grain pests are a diverse group of insects 
posing significant threats to the quality and quantity of 
stored products, resulting in economic losses and food 
security concerns (Wilberforce and Kalita, 2023).The 
identification of stored grain pests plays a crucial role in 
effective pest management strategies. The major pests 
of the stored grains come under the order Coleoptera, 
Lepidoptera, Psocoptera, and the class Acarina. These 
are categorized into Primary and secondary storage 
pests based on their type of infestation (Deshwal, 
2020). The primary storage pests are the insects that 
damage whole or healthy grains. These are further 
classified into internal and external feeders depending 
on their feeding habits (Singh and Saini, 2023). The 
internal feeders are the insects or larvae that feed within 
the kernels of whole grains or seeds, leaving behind 
hollow shells when they emerge as adults whereas the 

external feeders feed on germ and endosperm from 
outside. The secondary storage pests are the insects that 
damage broken or already damaged grains (Ahmad et 
al., 2021). These pests can cause significant economic 
losses by reducing the quality and quantity of stored 
grains, leading to spoilage and contamination of stored 
goods. The pertinent pest management tool requires 
effective identification based on their characteristics and 
behaviour to control these pests (Daglish et al., 2018).

Small-scale farmers traditionally store their grains 
in small quantities at home, while larger quantities are 
stored in warehouses for future use. In addition to relying 
on artificial pesticides and insecticides to minimize 
storage losses and maximize yields, there is a growing 
push to incorporate modern technological solutions 
utilizing machine learning and deep learning techniques. 
These interventions aid in detecting the presence of 
insect pests, identifying them, and preventing damage to 
stored grains. Accurate identification and classification 
of these pests are essential for implementing suitable 
management techniques to minimize the infestation 
risks (Hagstrum and Finn, 2012). In recent years, 
machine learning algorithms have emerged as powerful 
tools for automated and efficient pest classification. 
Saikumar et al., 2023 validated the machine learning 
models for the classification and detection of the major 
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insect pests in brinjal. Mendoza et al., 2023 built a 
simple insect detection system for stored grain using 
a camera, a low-power computer, and a trained deep 
learning model. This system identify insect pests in 
real-time under different lighting conditions, potentially 
aiding in faster and more effective insect control. Shi et 
al., 2020 proposed a method for automatically detecting 
and identifying eight common stored grain insects. 
The key innovation is a multiscale training strategy 
that extracts detailed features from images and locates 
potential insects.

Integrating machine learning algorithm enhances 
the efficiency and scalability of pest classification, 
accommodating a wide range of stored grain pest 
species. The present study advances stored grain pest 
management by leveraging machine learning algorithms 
for accurate classification. The necessity of using CNN, 
KNN (Kasinathan et al., 2021), NB and SVM (Quan et 
al., 2018) for the classification of stored grain pests is 
driven by several factors, including the complexity of 
pest identification, the need for accuracy and efficiency 
in pest management, and the availability of diverse data 
types. The raw images of Sitophilus oryzae Linn. (rice 
weevil), Sitophilus granarius Linn. (Wheat weevil), 
Rhizopertha dominica Fab. (lesser grain borer), 
Callosobruchus maculatus Linn. (cowpea weevil), 
Callosobruchus chinensis Linn. (adzuki bean weevil), 
Tribolium castaneum Herbst. (red flour beetle) and 
Oryzaephilus surinamensis Linn. (saw-toothed grain 
beetle) were employed in this study.

MATERIALS AND METHODS

The mass trapping of insect pests from stored cereals 
and pulses were performed with probe traps and an 
insect removal bin developed by TNAU without any 
attractants or chemicals (Mohan and Rajesh, 2016). 
The traps and bins with 2 mm perforation for cereals 
and 3mm for pulses were procured from Vridha 
Traders, Coimbatore. The ensnared insects' images 
were captured with a high-resolution camera to create 
a dataset. The stored grains infested with insects were 
collected from the local traders and households in and 

around Coimbatore city using traps and insect removal 
bins. The collected insects were identified using the 
standard identification keys of Southgate et al. (1957), 
Howe and Curie (1964) and Halstead (1993). The 
pests from stored cereals, S. oryzae, S. granarius, O. 
surinamensis, R. dominica and T. castaneum were 
collected using 2mm diameter perforated probe trap 
and insect removal bin (Mohan and Rajesh, 2016). 
While the pests of stored pulses, C. maculatus, and C. 
chinensis were collected using a 3mm probe trap and 
insect removal bin. The collected stored grain insect 
pests were focused under Stereo Binocular Microscope 
(Karl Zeiss Stemi DV4) and their images were captured 
using Samsung galaxy note 10 plus mobile phone to 
create a real time dataset. The dataset has a total of 
789 images belonging to 7 classes, C. chinensis (64 
images), C. maculatus (28 images), O. surinamensis 
(162 images), R. dominica (260 images), S. granarius 
(43 images), S. oryzae (100 images) and T. castaneum 
(127 images). The entire dataset was divided into a 
train-test ratio of 70:30. The image representation of 
the datasets were given in Fig. 1. All the images was 
employed with enhancement techniques (Krizhevsky et 
al., 2017) to reduce the noise and sharpen the images for 
better accuracy. This improves the quality of the image 
for better detection and classification of insects. The 
laptop used for this investigation has 8 GB RAM, an 
Intel® core ™ i5-8250U CPU, 64-bit Windows running 
at 1.60GHZ and the python programming language with 
Tensorflow and Keras packages.

Data augmentation was employed during the training 
phase to increase the diversity of the training dataset 
and improve the model's generalization ability (Fig. 2). 
Augmentation techniques such as shear transformations, 
zooming, and horizontal flipping were applied to the 
training images using the ImageDataGenerator class. 
Therefore, data augmentation helps to recognize 
complex objects (Krizhevsky et al., 2017). Leveraging 
more data for training deep learning neural networks 
and augmentation techniques to generate several 
variants of the images can improve the models' 
performance and help them adapt to unseen images. 
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Fig. 3. CNN Model learning curve for accuracy and loss 
 
 
 
 
 

Table 1: Classification results of insect dataset 
 

Classifier Classification results 

Fig. 1. Image representation of the dataset
C. maculatus            C. chinensis            T. castaneum    O. surinamensis         S. oryzae        S. granarius       R. dominica
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Following the augmentation of the image dataset, 
shape features were extracted from the images. 
Subsequently, a variety of machine learning algorithms, 
including Support Vector Machines (SVM), k-nearest 
Neighbors (KNN), and Naïve Bayes (NB), were 
employed to classify the different insect classes. A 
Convolutional Neural Network (CNN)-based insect 
classification approach was also employed to establish 
a benchmark performance. This experiment aimed to 
assess and compare the classification performance of 
these machine learning algorithms. The insects were 
categorized using SVM, KNN, NB, and CNN models.

RESULTS AND DISCUSSION

Investigation into the performance of insect 
classification was conducted across seven distinct 
insect species, namely C. chinensis, C. maculatus, O. 
surinamensis, R. dominica, S. granarius, S. oryzae, and 
T. castaneum. This study employed machine learning 
algorithms including support vector machines (SVM), 
k-nearest neighbors (KNN), and naïve bayes (NB), 
while also leveraging convolutional neural networks 
(CNN) to establish a performance benchmark against 
traditional machine learning techniques. The dataset 
was enriched with 789 insect images, which were 
augmented to facilitate robust model training, testing 
and validation for accurate classification outcomes. 
The SVM classifier was strategically selected due 
to its aptness for linearly separable data in feature 
space, incorporating a linear kernel. This classifier 
effectively segregated data into distinct classes by 
delineating hyperplanes. Its computational efficiency 
and proficiency in handling more superficial separation 
boundaries were vital. Employing a KNN classifier 
with a parameter setting of two neighbours indicated 
that, for each test instance, labels from its two nearest 
training data neighbours were considered. The choice of 

neighbour count influenced the balance between model 
bias and variance. The euclidean distance metric was 
the default measure for evaluating distances between 
points in multidimensional space.

The naïve bayes classifier, adapted to gaussian 
distribution, demonstrated swift classification results, 
albeit with lower accuracy. The deficiency in accuracy 
could be attributed to the assumption of feature 
independence and uniform feature weighting, which 
might not hold true in the intricate dataset. The CNN 
model was trained with specific hyperparameters, 
including a batch size of 16, 25 epochs, and a learning 
rate of 0.0001. It harnessed its convolutional and 
max-pooling layers to automatically extract intricate, 
high-level features from the insect dataset. This led to 
a remarkable accuracy of 98%, primarily attributed 
to CNN's capacity to grasp hierarchical features and 
intricate patterns, underlining its superiority in image 
classification tasks. Figure 3, representing the trend 
of accuracy and loss over epoch exhibits the training 
dynamics and performance of CNN model. The trend of 
accuracy over epochs ensures that the model is learning 
from the training dataset with few plateaus which may 
be due to noise or outliers, whereas the loss curve 
indicates that the model is improving.

The classifier model performance was evaluated 
through a classification report detailing metrics like 
precision, recall, F1-score, and overall accuracy (Table 
1) for each class. SVM achieved 81% accuracy as 
depicted in Table 1, across the seven insect classes, 
demonstrating its proficiency in classification. As a 
comparison with Xie et al. (2015), the authors applied 
moment-invariant features with SVM classifier and 
obtained an accuracy of 70.5% on 24 different insect 
classes of xie dataset. Further, Cheng et al., 2017 used ten 
classes of insects from Xie dataset and obtained 25.3% 

Fig. 2. Image augmentation of Oryzaephilus surinamensis
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classification accuracy by applying SVM classifier. 
Conversely, Naïve Bayes yielded lower accuracy 33% 
due to feature independence assumption violations 
and uniform feature weighting. KNN outperformed 
Naïve Bayes with 76% accuracy, effectively leveraging 
neighbours' labels to distinguish between insect species. 
With an accuracy of 81%, SVM showcased improved 
performance by aptly learning decision boundaries 
and achieving accurate predictions for most instances. 
However, CNN stood as the pinnacle performer, 
boasting a 98% accuracy. This outcome underscored its 
prowess in capturing intricate patterns, reaffirming its 
efficacy in classifying various insect species.

The computational time for classifier processing 
differed based on image type, size, algorithms, and 
processing units. Notably, SVM (3 min 18.33 s), KNN 
(3 min 58.36s), and NB (2 min 43.47s) exhibited 
quicker processing times. In contrast, CNN demanded 
increased processing time of about 28 min 33.11s due 
to its heightened accuracy, which justified its extended 
processing duration for accurate insect recognition 
and classification. The present investigation outlined 
the superior accuracy of the CNN model in insect 
classification, corroborated by its ability to extract 
high-level features effectively. This information could 
guide further research into optimizing insect recognition 
and classification systems. The convolutional neural 
network (CNN), emerging as the standout performer, 
owed its supremacy to its innate capacity for assimilating 

hierarchical features from the dataset. This capability 
enabled the extraction of pivotal attributes essential for 
delineating nuances between various insect species.

ACKNOWLEDGEMENTS

The authors acknowledge the Department of 
Zoology and Centre for Machine Learning and 
Intelligence, Avinashilingam Institute for Home Science 
and Higher Education for Women, Coimbatore, Tamil 
Nadu for providing the infrastructure to carry out the 
research work. 

FINANCIAL SUPPORT

The authors acknowledge the financial support 
provided by the DST-CURIE-AI, Centre for Machine 
Learning and Intelligence, Avinashilingam Institute 
for Home Science and Higher Education for Women, 
Coimbatore within the Phase II Project No.39 
framework.

AUTHOR CONTRIBUTION STATEMENT

MSS carried out the experiment, acquisition of 
images, analysed the data and wrote the manuscript. 
GM supervised the experiments and critically revised 
the manuscript. NV and GS substantively revised it. All 
authors read and approved the final manuscript.

CONFLICT OF INTEREST

No conflict of interest.

REFERENCES

Ahmad R, Hassan S, Ahmad S, Nighat S, Devi Y K, Javeed K, Hussain B. 
2021. Stored grain pests and current advances for their management. 
Postharvest Technology-Recent Advances, New Perspectives and 
Applications. pp. 45-82.

Cheng X, Zhang Y H, Wu Y Z, Yue Y 2017. Agricultural pests tracking 
and identification in video surveillance based on deep learning. 
Intelligent Computing Methodologies: 13th International 
Conference, Liverpool, UK. 2017. pp. 58-70.

Table 1: Classification results of insect dataset

Classifier
Classification results

Precision 
(%)

Recall 
(%)

F1 Scores 
(%)

Accuracy 
(%)

SVM 81 81 81 81
NB 80 76 76 33

KNN 80 76 76 76
CNN 98 98 98 98

24973-- M S Santhanambika 
 

 

 
 
 

 

 
 

Fig. 3. CNN Model learning curve for accuracy and loss 
 
 
 
 
 

Table 1: Classification results of insect dataset 
 

Classifier Classification results 

Fig. 3. CNN Model learning curve for accuracy and loss



	 Leveraging machine learning and deep learning techniques for accurate classification of stored grain pests   	 5 
	 M S Santhanambika et al.

Daglish G J, Nayak M K, Arthur F H, Athanassiou C G. 2018. Insect 
pest management in stored grain. Recent advances in stored product 
protection. pp. 45-63. 

Deshwal R, Vaibhav V, Kumar N, Kumar A, Singh R. 2020. Stored 
grain insect pests and their management: An overview. Journal of 
Entomology and Zoology Studies 8(5): 969-974. 

Devi Priya R, Anitha N, Devisurya V, Vidhyaa V P, Shobiya K, Suguna 
C. 2022. Insect and pest detection in stored grains: analysis of 
environmental factors and comparison of deep learning methods, 
WSEAS Transactions on Environment and Development, 18: pp. 
759-768.

Hagstrum D W, Finn P W. 2012. Insect pest management for raw 
commodities during storage, fundamentals of stored-product 
entomology. Kansas State University. pp. 213-218.

Halstead D G. 1993. Keys for the identification of beetles associated with 
stored products. Laemophloeidae, Passandridae and Silvanidae. 
Journal of Stored Products Research 29(2): 99-197. 

Howe R E, Currie J E. 1964. Some laboratory observations on the rates 
of development, mortality and oviposition of several species of 
Bruchidae breeding in stored pulses. Bulletin of Entomological 
Research 55(3): 437-477. 

Kasinathan T, Singaraju D, Uyyala S R. 2021. Insect classification and 
detection in field crops using modern machine learning techniques. 
Information Processing in Agriculture 8(3): 446-457.

Krizhevsky A, Sutskever I, Hinton G E. 2017. ImageNet classification 
with deep convolutional neural networks. Communications of the 
ACM 60(6): 84-90. 

Kumari S, Yadav S S, Rolania K, Dhanda, S. 2022. Effect of seed 
Protectants against pulse beetle Callosobruchus chinensis infesting 
mungbean. Indian Journal of Entomology 84(1): 176–177 

Mendoza Q A, Pordesimo L, Neilsen M, Armstrong P, Campbell J, 

Mendoza P T. 2023. Application of Machine Learning for Insect 
Monitoring in Grain Facilities. AI 4(1): 348-360. 

Mohan S, Rajesh A. 2016. Tools for stored product insects management 
and technology transfer. Indian Journal of Entomology 78(special): 
59-63. 

Saikumar N, Emmanuel N, Sri Phani Krishna K, Chinnabbai C, Uma 
Krishna K. 2023. Artificial Intelligence for Classification and 
Detection of Major Insect Pests of Brinjal. Indian Journal of 
Entomology 85(3): 563-566.

Shankar U, Abrol D P. 2012. Integrated pest management in stored grains. 
Integrated pest management: principles and practice. pp. 386-407. 

Shi Z, Dang H, Liu Z, Zhou X. 2020. Detection and identification of 
stored-grain insects using deep learning: A more effective neural 
network. IEEE Access 8: 163703-163714. 

Singh S, Saini M K. 2023. Broad Spectrum Activity of Essential Oils 
in Managing Stored Grain Pests.  Indian Journal of Entomology 
85(3): 854-864. 

Southgate B J, Howe R W, Brett G A. 1957. The specific status of 
Callosobruchus maculatus (F.) and Callosobruchus analis (F.). 
Bulletin of Entomological Research, 48(1): 79-89. 

Quan W, Wang J, Lei L, Gao M. 2018. Target recognition method 
based on multi-class SVM and evidence theory. In Advances in 
Internetworking, Data & Web Technologies: The 5th International 
Conference on Emerging Internetworking, Data & Web 
Technologies, 2017. pp. 262-272. 

Wilberforce S, Kalita S. 2023. Efficacy of Piper nigrum and Cuminum 
cyminum Seed Powders against Callosobruchus chinensis L. Indian 
Journal of Entomology 85(4): 973-976. 

Xie C, Zhang J, Li R, Li J, Hong P, Xia J, Chen P. 2015. Automatic 
classification for field crop insects via multiple-task sparse 
representation and multiple-kernel learning.  Computers and 
Electronics in Agriculture 119: 123-132. 

(Manuscript Received: February, 2024; Revised: May, 2024; 
Accepted: July, 2024; Online Published: August, 2024) 

Online First in www.entosocindia.org and indianentomology.org Ref. No. e24973




