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ABSTRACT

Insects are ectothermic organisms in which most of the biochemical, physiological and behavioral processes 
may depend on thermal conditions of surrounding environments. Here, we anticipated that the copulatory 
parameters may also depends on different rearing conditions. So, it was hypothesized that developmental 
thermal conditions might play crucial role in modulation of mate guarding as well as reproductive outputs 
of Zygogramma bicolorata Pallister (Coleoptera: Chrysomelidae). In result, deaths of larval instars and 
pupa were observed along with underdeveloped adults at extreme developmental thermal conditions (15°C 
and 35°C). On the other hand, maximum time to commencement of mating (TCM) was observed at 20°C 
and minimum at 25°C. But latent period (LP) and mate guarding duration (MGD) were maximum at 
30°C and minimum at 20°C and 25°C respectively. Further, result showed increase level of reproductive 
output at 20°C. So, it can be concluded that developmental temperature significantly influenced mate 
guarding and reproductive attributes.
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A fundamental query in behavioral ecology and 
evolution is why different behavioral activities varies 
in across the group of organisms; and it has long been 
known that biotic and abiotic factors play crucial role 
for all such activities. The biotic factors include any 
living species which is associated with other species 
for different behavioural patterns whereas major 
abiotic factors are photoperiod, humidity, CO2, and 
temperature (Gracia-Roa et al., 2020). Among them, 
temperature is a prominent abiotic factor that modifies 
a wide range of physiological, morphological, and 
behavioral patterns (Gracia-Roa et al., 2020). It 
affects individuals and populations on a wide range 
of taxonomy such as invertebrates (Leith et al., 2021) 
to the vertebrates phyla (Zhao et al., 2022). All across 
the phyla, arthropod represents one of the largest and 
diverse forms of life on the earth, in which members 
of Insecta are cosmopolitan in distribution (Kikuchi, 
2009), due to its highly adaptive efficiency (Darwin, 
1859). Since, insects are mostly ectothermic their 
behavioural and physiological functions are decided 
by the surrounding temperature (Fields, 2001). Sexual 
selection is also modulated by temperature like other 
behaviour (Gracia-Roa et al., 2020).

In sexual selection, mate guarding is one of the most 
important mechanism of post copulatory sexual selection 

which offers maximum paternity success towards the 
guarding male (Elgar et al., 2000; Simmons, 2001). 
Mate guarding is a prolonged period of mating which 
is beyond the time period required for the ejaculate 
transfer (Simmons, 2001). Such post mating interactions 
might have several profits for engaged partners (Alcock, 
1994) by minimizing the sperm competition (Vahed et 
al., 2011). It can be done either by preventing female 
re-mating (Parker, 1984) or by inserted aedeagus in 
female genitalia to prevent sperm ejection/ flushing 
removal after the mating (Chaudhary et al., 2015). It 
might be affected by different factors which includes 
male resistivity (Rowe, 1992), receptivity of female 
(Mossinson and Yuval, 2003), degree of sperm transfer 
(Dallai et al., 2013), male density (Wada et al., 1999), 
mating intervals (Carroll, 1991), predation (Cothran, 
2004), age and body size of the partners (Amin et al., 
2012) etc. 

For the current study, the model organism 
Zygogramma bicolorata Pallister has been used, 
which is known as parthenium beetle. It is one of the 
most effective biological control agents of Parthenium 
hysterophorus L. Several studies have been performed 
on this beetle regarding the biocontrol activity (Cowie 
et al., 2019; Hasan et al., 2020; Patel et al., 2020; 
Bhusal et al., 2020), diapause behaviour (Bali et al., 
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2022), reproductive behaviour (Bali et al., 2022), 
paternity success (Afaq and Omkar, 2017) and post 
copulatory mate guarding (Bhaisare et al., 2021). After 
review of literature, the effect of temperature on time 
to commencement of mating (TCM) and latent period 
(LP), post copulatory mate guarding have not yet 
been studied. It is one of the best model to address the 
question arose in the present study as knowledge on post 
copulatory mate guarding has well established in this 
beetle (Bhaisare et al., 2021). So, present study aims to 
examine the influence of different thermal regimes on 
TCM, LP, post copulatory mate guarding, fecundity and 
percent egg viability. It was hypothesized that, variation 
in the developmental thermal condition may modulate 
the pre- copulatory parameters and reproductive 
outputs. These results will provide valuable evidences 
on the potential effects of thermal regimes on the 
reproductive behaviour and output of this beetles. 

MATERIALS AND METHODS

Adults of Z. bicolorata were collected from the 
agricultural fields of Amarkantak (22°40’N,81°45’E), 
India, to establish a laboratory stock. The beetles 
were fed with ad libitum fresh excised Parthenium 
hysterophorus leaves in plastic petri dishes (14.5×1.5 
cm) and maintained in a BOD incubator (25± 2°C, 65± 
5% RH and 14L: 10D) and adults were paired in petri 
dish for the oviposition.  The withered leaves were 
replaced with fresh ones on a regular basis. Newly 
hatched larvae were developed in new petri dishes 
until they reached the fourth instar. Fourth instar larvae 
were then transfer to 500 ml glass beakers filled with 
moist sand for pupation. Newly emerged 10-day-
old sexually mature adults were paired again for the 
oviposition and newly hatched larvae used for the 
further experimentation. First instar larvae from the 
stock were reared till the adult’s emergence at 15, 20, 
25, 30 and 35°C.  After the emergence, adult male and 
female individually reared in separate petri dish, until 
they reach to their sexual maturity. After that, adult 
male and female of respective developmental thermal 
condition were kept in petri dish for mating and mating 
parameters such as time to commencement of mating 
(TCM), latent period (LP) (Bhaisare et al. 2021) and 
mate guarding duration (MGD) were recorded with 
Magnus stereoscopic microscope. After the natural 
disengagement, the female was isolated in new petri 
dish for further observation of reproductive outputs such 
as fecundity and egg viability. All the sets of experiment 
were performed in 10 replicates.  The data were checked 
for normality and homogeneity of the variances using 

Kolmogorov-Smirnov and Bartlett’s tests, respectively. 
TCM, LP, MGD, fecundity and % eggs viability as a 
dependent factor were subjected to one-way ANOVA, 
followed by Tukey’s post hoc comparisons of means, 
considering temperature as independent factor. All the 
statistical tests were performed using MINITAB 16 
(Minitab Inc., Pennsylvania, USA).

RESULTS AND DISCUSSION

The deaths of larval instars and pupa were 
observed along with underdeveloped adults at extreme 
developmental thermal conditions (15 and 35°C). 
Unfortunately, adults for further experimentation had 
not been able to rear at these thermal conditions (Fig. 
1A). One-way ANOVA revealed significant effect of 
temperature on TCM (P= 0.040, df= 2, F= 3.63), MGD 
(P= 0.001, df= 2, F= 10.11), fecundity (P= 0.000, df= 
2, F= 16.96) and eggs viability (P= 0.000, df= 2, F= 
34.36) but showed insignificant effects on the LP (P= 
0.630, df= 2, F= 0.47). Graphs showed maximum 
TCM (8.35± 1.09 min) at 30°C and it was minimum 
(4.59± 0.66 min) at 25°C (Fig. 1A). Further results also 
revealed that the LP was increasing with temperature 
(29.65± 3.81 sec, 31.78± 5.39 sec and 34.6± 5.91 sec) 
from 20 to 30°C respectively (Fig. 1B) but did not show 
significant effect. MGD was maximum (818.5± 72.31 
min) at 30°C and it was minimum (383± 32.06 min) at 
25°C (Fig. 1C). However, the reproductive output was 
opposite to the pre-copulatory parameters– it was found 
maximum at 20°C and subsequently decreased at 25 and 
30°C. The maximum fecundity (26.88± 1.64 eggs) (Fig. 
1D) and eggs viability (91.14± 1.66 % larvae hatched) 
(Fig. 1E) were observed at 20°C. 

In the present study, extreme developmental thermal 
conditions (15 and 35°C) had not been tolerated by 
the larval, pupal and pre-mature adult stages leading 
to death. The intolerance of thermal shock might be 
because of the decrease in the titer of obligate bacterial 
endosymbionts which manipulate the thermal tolerance 
of insects host species as observed in aphids (Zhang et 
al., 2019). Further, approximately average temperature 
of the geographical area (220 40’N, 810 45’E) of 
collected beetle ranged between 20 to 30°C (Malviya 
and Dwivedi, 2015) which may be adopted by the beetle 
through the epigenetic changes, as temperature is one of 
the factor for the changes in the genome at epigenetic 
level (Richard et al., 2019). Hence, either positive or 
negative shift in this ambient temperature range may 
disturb the physiological and biochemical activities of 
this beetle which ultimately leads to intolerance. 
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Further, results states that the maximum TCM was 
observed at 30°C and minimum at 25°C. It might be 
because of the mean time of the sex hormone release, 
which is progressive at low temperature in compare 
to the high temperature (Sower et al., 1971). It has 
been also studied that the release of sex pheromone is 
faster at the low temperature than at high temperature 
(Mbata, 1986; Sower et al., 1971). Apart from this, 
we also observed that LP increased with increase in 
temperature from 20 to 30°C but statistical analysis 

showed insignificant effect of temperature on it. This 
might be because, LP is very short period of time, which 
implies no significant difference in all the thermal 
conditions. The similar findings were also reported by 
Spieth and Ringo (1983) and Ferveur et al. (1996) in D. 
melanogaster. The maximum mate guarding duration 
was recorded at 30°C and reduced at low temperature. 
The decrease in the mate guarding duration might be 
because it is physically difficult for males to transfer 
sperm or mate for longer duration at low temperatures 

Fig. 1. Effects of developmental thermal conditions on: (A) times to commencement of 
mating, (B) latent period, (C) mate guarding duration, (D) fecundity and (E) eggs viability of 
Z. bicolorata (Values Mean± SE; Small letters represents comparisons of mean; Similar letters 
indicates lack of significant difference): *Death of different life stages at 15°C and **Death of 
different life stages at 35°C.
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Fig. 1. Effects of developmental thermal conditions on: (A) times to commencement of mating, 
(B) latent period, (C) mate guarding duration, (D) fecundity and (E) percent eggs viability of 
Zygogramma bicolorata (Values are Mean± SE; Small letters represents the comparisons of 
mean between the treatments; Similar letters indicates lack of significant difference). 
*Death of different life stages at 15°C and **Death of different life stages at 35°C. 
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(Horton et al., 2002). The other finding also shows that 
low temperature reduces the intensity of biochemical 
and physiological processes (Kostal et al., 2004; 
Overgaard et al., 2007). Similar results were reported 
in D. pseudoobscura by Parsons and Kaul (1966) and 
in Callosobruchus chinensis (Katsuki and Miyatake, 
2009). 

Maximum fecundity was observed at 20°C. Similar 
results were recorded in Scathophaga stercoraria 
which showed that warmer temperatures give rise to 
smaller ovarioles due to which fecundity decreases 
(Blanckenhorn and Henseler, 2005). Another possibility 
is that under the thermal stress condition decrease in 
fecundity due to the direct cessation of eggs deposition 
during the oviposition period (Huang et al., 2007). 
Although the slight increase in temperature is non-
lethal to adults but it may produce adverse effects for 
many physiological functions, particularly reproductive 
systems. Similar findings have been reported in 
Stomoxys (Gilles et al., 2005), N. osculatus (Ren et al., 
2002) and in acarophagous ladybird beetle Stethorus 
gilvifrons (Aksit et al., 2007) and also some other insects 
such as Eurosta solidaginis (Irwin and Lee Jr., 2000), 
D. melanogaster (Hercus et al., 2003), and Diplolepis 
spinosa (Williams et al., 2003). A similar trend was also 
recorded for the eggs viability which was high at 20°C 
and it significantly decreases at higher temperatures. 
This decrease with increased temperature was possibly 
due to the inhibition of spermatogenesis or mortality of 
sperm in the spermathecae of female at high temperature 
(Ponsonby and Copland, 1998). In support, similar 
findings were also been reported in the Anoplophora 
glabripennis (Coleoptera: Cerambycidae) by Keena 
(2006). Apart from this, the warmer temperature might 
give rise to smaller testicular size which anticipated in 
the formation of smaller spermatophore which directly 
affect the fertilizations which leads in the reduction 
of egg viability (Blanckenhorn and Henseler, 2005). 
Thus, the highest egg viability was recorded at 20°C, 
indicating that this might be the optimum temperature 
for fertilization.

In conclusion, the temperature changes during 
development affect traits that are associated with pre- 
and postcopulatory sexual selection of Z. bicolorata. 
Thus, long-term variation in temperature can have 
significant effects on the fitness consequences for 
this beetle, via the interactions between temperature 
and pre- and postcopulatory processes. Moreover, the 
ambient temperature during development and mating 
can affect female mating because the number of sperms 

transferred to females is sensitive to the temperature.  
Thus, slight positive or negative variation in the ambient 
temperature during development significantly modulate 
the reproductive performance, post copulatory mate 
guarding and reproductive outputs in Z. bicolorata. 
However, further study needs to be conducted to know 
the exact mechanism by which temperature modulate 
the sexual selection and reproductive attributes in this 
beetle and other ectotherm’s. 
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