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ABSTRACT

Due to their enormous diversity, small body weight, flight and shorter lifecycles, insects thrive in almost 
all macro- and microhabitats. A plethora of microorganisms interact with insects as symbionts. Insect-
microbial symbiont interaction can be either mutualistic, commensalism or pathogenic. The entry of 
a microbe mounts immune defenses in the insect at the local or systemic level in order to mitigate the 
damage inflicted. Microbes, on the other hand, synthesize various molecules/ toxins or develop various 
strategies to evade or counter insect defenses, allowing them to utilize the host resources for reproduction, 
coexistence or transmission. This review provides a comprehensive understanding of these insect-microbe 
interactions including bacteria, fungi and virus. Attempt has also been made to highlight the tripartite 
interactions between insects, microbes and plants in view of the need for sustainable pest management
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Insects infest plants and also transmit human 
diseases. Their ability to thrive in all kinds of 
microhabitats and microclimatic conditions makes 
their association with microbes inevitable. Upto 10% 
of the insect’s biomass comprises of microbiota. The 
insect-microbe interactions are mostly presented 
separately as insect-bacterial, insect-fungal, or insect-
viral interactions. Further, in natural ecological settings, 
insect-microbe-plant interactions are predominant 
which emphasizes the need to explore the cumulative 
and complex role of these tripartite interactions The 
current review documents the association of insects with 
microorganisms including bacteria, fungi, and virus and 
also emphasize on the multitrophic interactions between 
insects, microbes, and plants in view of the need for 
effective ecofriendly pest management strategies.

1. Insect-bacterial interactions

a. Ectosymbionts
Insect cuticle forms a robust barrier against

microbial pathogens. However, certain bacteria that 
colonize the exoskeleton act as ectosymbionts and offer 
protection against various entomopathogenic fungi. 
Cultivable bacteria, Lactiplantibacillus plantarum 
was isolated from the body surface of Drosophila 
melanogaster (Hong et al., 2022). Females of solitary 
digger wasp tribe, Philanthini, known as the beewolves, 
harbour Streptomyces sp. on their exoskeleton 

(Goettler et al., 2022). Fungus-growing ants retain 
actinobacteria Pseudonocardia that produce secondary 
metabolites against the fungus (Goldstein et al., 2020). 
Burkholderia strain of bacterial symbionts inhabits 
the cuticle of Lagria villosa beetle and produce an 
antifungal compound, lagriamide (Florez et al., 2018). 
Bacillus pumilus isolated from the cuticular surface 
of Delphacodes sp. inhibits Beauveria bassiana 
conidial germination (Fernandez-Marin et al., 2006). 
Insects trade-off this protection offered by bacterial 
ectosymbionts during moulting process. Intriguingly, 
the cuticular invaginations in Lagria villosa larvae 
prevent a complete elimination of symbionts during 
moulting. Similarly, Oreophoetes peruana nymphs 
retain the cuticular lining even after the moult.

b. Endosymbionts
The gut microflora of an insect is involved in

nutritional provisioning, digestion, detoxification, 
reproduction, immunity and communication. The 
obligate and facultative gut bacteria are broadly 
categorized as endosymbionts and free-living symbionts, 
respectively. The obligate bacteria are localized in 
specialized cells known as bacteriocytes and mostly 
exhibit mutualistic association with the insect and offers 
fitness advantage to the host. The characteristic feature of 
the bacterial partner in the obligate relation with its host 
is its genome size reduction and maternal transmission 
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(Singh et al., 2021). Many insects with bacteriocyte 
symbioses are pests of agricultural importance. 
Buchnera aphidicola is an obligate symbiont of aphids 
and a well characterized model system. The bacteria 
are indispensable for the survival and fecundity of the 
insect host. Also, B. aphidicola genome size is reduced 
such that it is deficient in branched-chain amino acid 
synthesis and therefore dependent on the insect host for 
its nutrition (Moran, 2021).

Facultative microbes could be a mutualist, 
commensal or a pathogen that are either vertically 
or horizontally transmitted. Facultative symbionts 
predominantly assist their insect hosts in digestion 
and/or xenobiotic detoxification. Pseudomonas sp.- 
Spodoptera frugiperda interaction provides pesticide 
resistance to the host. Wolbachia sp. is yet another 
well cited example of facultative endosymbiont that 
colonizes the mosquito gut and functions either as 
mutualist or pathogen. Wolbachia endosymbionts can 
manipulate the host’s reproductive fitness and either 
enhances female fertility or cause male sterility (Singh 
et al., 2021). Insect-bacterial pathogenic interactions 
include Bacillus thuringiensis or Bacillus cereus 
with lepidopterans, coleopterans, and dipterans; 
Pseudomonas entomophila and Serratia marcescens 
with Drosophila sp.; Yersinia pestis-Xenopsylla 
cheopiseas; Photorhabdus and Xenorhabdus species 
with tobacco hornworm, Manduca sexta; Serratia 
entomophila with the grass grub, Costelytra zealandica 
(Vallet-Gely et al., 2008).

Nematobacterial complexes are widely used in 
the agricultural systems as insect biocontrol agents. 
The nematodes Heterorhabditis and Steinernema sp. 
symbiotically associate with bacteria in the 
genera Photorhabdus and Xenorhabdus sp. These 
nematobacterial complexes detect the insect host, 
attaches to the cuticle, penetrates through natural 
openings, invades into the insect body cavity and 
establishes in the hemolymph. Thereafter, the symbiotic 
bacteria that are released out of the nematodes rapidly 
proliferate in the hemolymph, secrete toxins and 
virulence factors to kill the host. Within the insect 
cadaver, the nematodes reproduce by feeding on the 
bacteria (Eleftherianos et al., 2016). Filarial nematodes 
including Brugia sp., Onchocerca volvulus and 
Wuchereria bancrofti, are thread-like roundworms 
that cause filariasis. In the mammalian host, the sexual 
stage gives rise to microfilarial larvae. Insects ingest 
the microfilariae from the mammalian blood which 
penetrates the midgut epithelium to migrate to the 

thoracic musculature through hemolymph and invade 
the flight muscles. In the muscle cells, the microfiliariae 
undergo two molts to transform into 3rd instar infective 
larvae. The infective larvae migrate to proboscis from 
where they are again transmitted to the subsequent 
human host. Table 1 provides the list of well-established 
insect-bacterial symbiotic associations.

c. Insect immune responses
Insects initiate an immune response against the 

pathogenic bacteria however symbiont bacteria 
evade the immune system and co-exist with the host. 
Peptidoglycan (PGN) is the main component of the 
bacterial cell wall that triggers an innate immune 
response in insects. Peptidoglycan recognition proteins 
(PGRPs) expressed by insects bind to these PGNs. 
The PGRP-SA and PGRP-SD-mediated recognition 
of Lys-type PGN in Gram-positive bacteria mainly 
activates the Toll signaling pathway. Gram-negative 
bacteria recognize the DAP-type PGN through specific 
PGRPs (e.g., PGRP-LC and PGRP-LE) to activate 
the immunodeficiency (Imd) pathway (Liehl et al., 
2006; Zhang et al., 2021). Antibacterial responses are 
well characterized in D. melanogaster. The presence 
of bacteria in the insect gut activates local reactive 
oxygen species (ROS) and initiates antimicrobial 
peptide (AMP) production. ROS is generated by the 
dual oxidase (Duox) enzyme. An extracellular immune-
regulated catalase (IRC) maintains the homeostatic 
redox balance that is altered by the bacterial ingestion. 
ROS-mediated protection against microorganisms 
constitutes the first line of defense (Ha et al., 2005). 
ROS tolerant bacteria elicit either Toll or Imd pathway 
leading to AMP and other effector molecule synthesis. 

The insect AMPs include cecropins, defensins, 
attacins, diptericins, ponericins, and metchnikowins 
(Lemaitre et al., 2007). AMP production such as 
diptericin is active against a range of bacteria. Diptericins 
constitute a family of glycine-rich antibacterial 
peptides isolated from the dipteran haemolymph 
(Akbari et al., 2018). Cecropins were initially 
detected in the hemolymph of Hyalophora cecropia. 
Cecropins are active against both gram-positive and 
gram-negative bacteria (Eleftherianos et al., 2021). 
Insect defensins isolated from various insect orders 
including Coleoptera, Diptera, Hemiptera, Lepidoptera, 
Hymenoptera, and Trichoptera selectively target gram-
positive bacteria (Wu et al., 2018). Silkworm AMPs 
including cecropins, defensins, moricins, gloverins, 
lebocins and attacins exhibit antimicrobial activity 
against a broad range of bacteria, such as Klebsiella 
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Table 1. List of symbionts, hosts, transmission mode, and their association

Symbiont Association Host Transmission mode References
Buchnera spp. Obligate mutualism Aleyrodidae Transovarial (Morin et al., 1999)
Carsonella ruddii Obligate mutualism Psyllids Transovarial (Thao et al., 2011)
Candidatus Westeberhardia
cardiocondylae

Obligate mutualism Formicidae Horizontal and
maternal

(Oliver et al., 2003)

Buchnera aphidicola Obligate mutualism Aphidoidea Transovarial (Baumann, 2005)
Sulcia muelleri Obligate mutualism Proconiini Transovarial (Moran et al., 2005)
Baumannia cicadellinicola Obligate mutualism Proconiini Transovarial (Wu et al., 2006)
Ishikawaella capsulata Obligate mutualism Megacopta cribraria, 

Halyomorpha halys
Capsule (Nikoh et al., 2011)

Tremblaya princeps Obligate mutualism Phenacoccus solenopsis Transovarial (Lopez-madrigal et al., 
2013)

Moranella endobia Obligate mutualism Phenacoccus solenopsis Maternal (Lopez-madrigal et al., 
2013)

Portiera aleyrodidarum Obligate mutualism Aleyrodidae Transovarial (Santos-garcia et al., 
2015) 

Rosenkranzia clausaccus Obligate mutualism Halyomorpha halys Egg smearing (Hayashi et al., 2015)
Blochmannia floridanus Obligate mutualism Camponotus 

pennsylvanicus
Transovarial (Kupper et al., 2016)

Nardonella spp. Obligate mutualism Curculionoidea, 
Coleoptera 

Ovaries (Anbutusu et al., 2017)

Stammera spp. Obligate mutualism Cassida rubiginosa Egg-caplet (Salem et al., 2014
Wigglesworthia glossinidia Obligate mutualism  Glossina spp. Transovarial (Bing et al., 2017)
Wigglesworthia spp.,
Sodalis glossinidia

Obligate mutualism Glossina spp. Maternal (Griffith et al., 2018; 
Zaidman-Remy et al., 
2018) 

Acetobacter thailandicus,  
Lactobacillus plantarum

 Facultative symbionts Dosophila melanogaster NA (Pais et al., 2018; 
Storelli et al., 2018) 

Acetobacter tropicalis,
Erwinia dacicola

Facultative symbionts Bactrocera oleae Maternal (Estes et al., 2009; 
Kounatidies al., 2009; 
Ben-yosef et al., 2010) 

Candidatus,  
Arsenophonus arthopodicus

Facultative
commensalism

Hippoboscidae Transovarial (Novakova et al., 
2015)

Candidatus liberibacte 
psyllaurous

Facultative 
commensalism

Bactericera cockerelli Vector (Hansen et al., 2008)

Cardinium sp. Facultative parasite Fulgoroidea Transovarial (Gonella et al., 2011)
Enterococcus spp., 
Enterobacter spp.,  
Serratia spp.

Facultative symbionts Plutella xylostella Vertical (Xia et al., 2018)

Enterrococcus spp., 
Erwinia spp.,  
Rahnella spp.,  
Serratia spp. 

Facultative symbionts Hylobius abietis Food substrate (Berasatagui et al., 
2017)

Gilliamella apicola, 
Snodgrassiella spp.

Facultative symbionts   Apis mellifera Maternal (Martinson et al., 
2012)

Gilliamella bombicola,
Snodgrassiella spp.

Facultative symbionts Bombus spp. Maternal (Koch et al., 2011; 
Zhang et al., 2016)

Hamiltonella defensa Facultative 
commensalism

Aphidoidea, Aleyrodidae Horizontal & maternal (Marubayashi et al., 
2014)

Klebsiella, 
Stenotrophomonas, 
Microbacterium, Bacillus, 
Enterococcus

Facultative symbionts Diatraea saccharalis NA (Kucuk et al., 2020)

(contd.)
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Lactococcus spp., 
Dysgonomonas spp., 
Serratia spp.

Facultative symbionts Cyrtotrachelus dux NA (Luo et al., 2019)

Promicromonospora 
pachnodae

Facultative Pachnoda marginata NA (Cazemier et al., 2023)

Proteus vulgaris, 
Klebsiella pneumoniae, 
Citrobacter freundii,
Pseudomonas fluorescens, 
Erwinia

Facultative Bombyx mori NA (Anand et al., 2010)

Providencia spp., 
Morganella spp., 
Vagococcus spp.,
Proteus spp.,  
Koukoulia spp.,  
Serratia spp.

Facultative symbionts Nicrophorus sp. Maternal (Wang et al., 2017;  
Shukla et al., 2018; 
Heise et al., 2019)

Pseudomonas spp., 
Cellulosimicrobrium spp.,
Ochrobacterium spp.

Facultative symbionts Holotrichia parallela NA (Huang et al., 2012)

Pseudomonas spp.,  
Pantoea spp.

Facultative symbionts Hypothenemus hampei Deposited on eggs (Ceja-Navarro et al., 
2015) 

Regiella insecticola Facultative 
commensalism

Aphidoidea Transovarial (Vorburger et al., 2010) 

Rhodococcus rhodnii Facultative mutualism Reduviidae Coprophagy (Kikuchi, 2009)
Rickettsia sp. Facultative parasite Various insects Transovarial (Behar et al., 2010) 
Rickettsia sp.,  
Cardinium sp.,  
Wolbachia sp.

Facultative parasites Cicadellidae Transmitted via food (Nakamura et al., 
2009) 

Serratia marcescens Facultative symbiont Hematophagous insects Adhere to eggs
surface, colonize
ovipositional site

(Bando et al., 2013)

Serratia spp. Facultative Spodoptera litura NA (Subhashini, 2015)
Serratia symbiotica Facultative 

commensalism
Aphidoidea Horizontal 

transmission
(Pons et al., 2019)

Sodalis glossinidius Secondary facultative Glossina Milk gland, 
transovarial, & mating

(De vooght et al., 
2015) 

Spiroplasma sp. Facultative parasite Various insects Transovarial (Bove, 1997)
Streptococcus faecalis, 
Enterecoccus mundii

Facultative symbiont Galleria mellonella NA (Johnston et al., 2015) 

Streptomyces spp. Facultative symbiont Sirex noctilio NA (Adams et al., 2011)
Wolbachia sp. Facultative parasite Various insects Transovarial (Miller, 2013)

sp., Shigella sp., Staphylococcus aureus, Enterococcus 
faecalis, B. bombysepticus, B. subtilis, P. aeruginosa 
and Xanthomonas campestris. Pyrrhocoricin is a 
proline-rich peptide isolated from the sap-sucking bug, 
Pyrrhocoris apterus (Nesa et al., 2022). 

Systemic immune responses are triggered when the 
PGN fragments are translocated from the gut lumen into 
the haemolymph. Haemolymph consists of haemocytes 
including plasmatocytes, granulocytes, oenocytoids/
crystal cells, lamellocytes and spherulocytes. Cellular 
immune responses to bacterial infection include 
nodulation, phagocytosis and clotting of haemolymph 

by plasmatocytes; melanization by crystal cells and/
or oenocytoids; and encapsulation by lamellocytes. 
Both haemocytes and the fat body play an important 
role in the prophenoloxidase (PPO) cascade activation 
(Sadekuzzaman et al., 2018). Figures 1 and 2 summarize 
the insect humoral and cell-mediated immune responses 
against bacteria, fungal and viral pathogens 

e. Immunity-reproduction tradeoffs
Insects rely solely on innate immunity to protect 

themselves from pathogens. In many female insects, 
there is a tradeoff observed between immune defenses 
and reproduction as both are physiologically and 

(contd. Table 1)
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energetically demanding processes. The molecular 
mechanism of the tradeoff is mediated by those proteins 
that are involved in both immunity and/or fertility.  For 
eg., Anopheles gambiae thioester-containing protien 
-1(TEP-1) alleles are associated with higher fertility. 
But at the same time, these alleles are also responsible 
for the increased susceptibility to Plasmodium sp. The 
tradeoff between mating and immunity is evident only 
when the infection is pathogenic (Baxter et al., 2017).

f. Bacterial evasion strategies
Bacteria employ multiple evasion strategies against 

insect defenses for its successful colonization or 
transmission. Catalase expression in Salmonella or E. 
coli sp. allow these bacteria to tolerate ROS generation 
in the gut (Ha et al., 2005). Gut persistence is a prominent 
strategy employed by few bacteria. Yersinia pestis 
proliferates in Xenopsylla cheopis (rat flea) midgut and 
colonizes the proventriculus with the aid of Yersinia 
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murine toxin (Ymt). Ymt offers protection against a 
cytotoxic digestion product of blood plasma in the gut 
(Hinnebusch et al., 2002). Mycobacterium ulcerans 
ensure proliferation by migrating from the digestive 
tract to salivary gland with the assistance of virulence 
factor, mycolactone (Marsollier et al., 2005). Erwinia 
carotovora strain (Ecc15) colonizes the Drosophila gut 
by the accumulation of Erwinia virulence factor (Evf) 
(Acosta Muniz et al., 2007). Few bacteria alter insect 
gut physiology for successful immune evasion. For 
eg., Serratia entomophila antifeeding prophage (Afp) 
forms a bullet-shaped virus-like structure which serves 
as toxin-delivery apparatus in the New Zealand grass 
grub, Costelytra zealandica to induce amber coloration 
of the gut and decline digestive enzyme levels (Jackson 
et al., 2001). Two main strategies employed by bacterial 
pathogens to escape the systemic immune responses are 
to i) evade detection due to absence of immune elicitors 
on their cell surfaces, and ii) suppress the immune 
response by proteases/toxins/virulence factors. In 
weevil, Sitophilus zeamais, bacteriocytes express IMD-
dependent PGN amidase that degrades the immunogenic 
PGN fragments (Anselme et al., 2006). Psendomonas 
aeruginosa suppresses D. melanogaster defenses by 
limiting AMP gene expression (Apidianakis et al., 
2005). The Dlt operon of gram-positive bacteria encodes 
enzymes that incorporate D-alanine in the techoic acids 
on the surface of the bacteria to neutralize their negative 
charge and confer resistance to cationic AMPs. Further, 
AprA, a metalloprotease produced by P. entomophila 
provides protection against Drosophila AMPs, 
particularly, Diptericin (Liehl et al., 2006).

2. Insect-fungal associations

a. Ectosymbionts
Insect members belonging to the orders Coleoptera, 

Diptera, Lepidoptera, Hemiptera, Hymenoptera and 
Blattodea are involved in mutualistic fungal associations 
with Ascomycetes (Microascales, Botryosphaeriales, 
Eurotiales, Helotiales, Capnodiales, Chaetothyriales, 
Hypocreales, Saccharomycetales, Ophiostomatales, 
Xylariales) or Basidiomycetes (Agaricales, Russulales, 
Polyporales, Boletales, Septobasidiales). Insect-fungus 
mutualisms include fungal cultivation by ambrosia 
and bark beetles, fungus-farming leaf-cutter ants, 
and fungus-farming termites. All these three are the 
examples of ectosymbiotic associations (Biedermann 
et al., 2020).

b. Endosymbionts 
Few yeast species are localized in specialized 

fat body cells called mycetocytes of certain insect 
species belonging to the Coleoptera and Hemiptera 
orders (Malassigne et al., 2021). However, yeasts 
predominantly colonize the gut to offer nutrients and 
protection against pathogens and toxic compounds. 
Yeast species located in the mycetocytes of the 
planthopper, Nilaparvata lugens (Hou et al., 2013) 
and the aphid, Cerataphis brasiliensis (Vogel et al., 
2013) are primary symbionts. Endosymbiotic yeasts 
associated with bacterial species act as secondary 
symbionts. For eg., Metschnikowia pimensis of the 
planthopper, Hishimonus phycitis are associated with 
bacterial endosymbionts belonging to Sulcia and Nasuia 
species (Hemmati et al., 2017). Similarly, in several 
cicada species including Cryptotympana facialis, 
Hyalessa maculaticollis, Graptopsaltria nigrofuscata 
and Meimuna opalifera, Ophiocordyceps fungi is 
associated with the primary bacterial endosymbiont, 
Sulcia (Matsuura et al., 2018).

Entomopathogenic fungi include species belonging 
to genera Beauveria, Metarhizium, Opiocordyceps, 
Basidiobolus & Conidiobolus and species Cordyceps 
militaris, Hirsutella thomp sonii, Isaria fumosorosea, 
Aschersonia aleyrodis, Lecanicillium lecanii, Sporothrixin 
sectorum, Ascosphaera apis & Tolypocladium inflatum 
(Vlisidou et al., 2010). Fungal conidia adhere to the 
insect cuticle, detoxify the cuticle, penetrate inside, 
develop within the hemocoel and sporulate when 
released from the insect cadaver (Kim et al., 2005; 
Park et al., 2004; Shrestha et al., 2007). Metarhizium 
species encoded MAD1 molecule contributes to fungal 
virulence by facilitating spore adhesion to the insect 
cuticle. Fungal G protein-coupled receptors are involved 
in insect-host recognition and subsequent downstream 
activation of mitogen-activated protein kinase (MAPK) 
and protein kinase A pathways to activate the formation 
of the appressorium structure, which is pivotal for the 
host recognition (Miyoshi and Shinoda, 2000).

c. Insect behavioral responses against fungi
Social insects such as ants, bees and termites sense 

the presence of distant virulent fungi using olfactory 
cues (de Roode et al., 2012; Feng et al., 2015). Termite, 
Macrotermes michaelseni, differentiates the degree 
of virulence among strains of M. anisopliae and B. 
bassiana based on the volatile emissions emanated by 
these fungi (Mburu et al., 2009; Ugelvig et al., 2007). 
Further, honeybee workers identify and remove the 
larvae infected with the fungus A. apis by detection 
of phenethyl acetate originated from the pathogen. 
Few insects secrete out antifungal compounds by 
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either salivary glands or metathoracic gland to protect 
themselves and their nest mates (Mburu et al., 2013). 
For eg., termicin and GNBP2, secreted by termite 
salivary glands possess antifungal activity (Tragust et 
al., 2013). In certain ant species, fungicidal secretion is 
released from the glands within a short span of fungal 
infection (Swanson et al., 2009). When these glands 
were blocked, infected ants died eventually. Similarly, 
bed bug glandular secretions, (E)-2-hexenal and (E)-
2-octenal, inhibited M. anisopliae (Bulmer et al., 
2009). Few insects including locusts (eg., Schistocerca 
gregaria) bask in the sun to raise their body temperature 
to fight Metarhizium infection (Lamberty et al., 2001). 
Tribolium castaneum secretes out benzoquinones to 
defend itself against the B. bassiana infection (Ulrich 
et al., 2015).

d. Insect immune responses against fungi
In insects, serine protease, persephone, activated by 

fungal Pr1 protease, and gram-negative bacteria-binding 
protein-3 (GNBP-3) act exclusively to detect antifungal 
infection by binding specifically to fungal α- and 
β-glycan structures and trigger downstream signalling 
pathways/effector molecules (Blanford et al., 1999; 
Toledo et al., 2011). Fungal infection triggers the toll 
signalling pathway to produce antifungal peptides. So 
far, eight insect antifungal peptides have been reported 
(Pedrini et al., 2015). Fungal infection induced the 
expression of AMPs, drosomycin and metchnikowin 
in Drosophila (Gottar et al., 2006). Bombyx mori 
Cecropin A and Gloverin 2 demonstrated antifungal 
activity against B. bassiana (Mao et al., 2021). Other 
well characterized insect antifungal peptides include 
heliomicin from Heliothis virescens (Faruck et al., 
2016), termicin from termites (Kurata et al., 2006), and 
gallerimycin from Galleria mellonella (Lu et al., 2017). 
A recent study in Drosophila revealed the defensive role 
of TEPs against entomopathogenic fungi by activation 
of toll pathway (Da Silva et al., 2003; Mireille Lamberty 
et al., 1999). Beauveria bassiana infection resulted in 
elevated levels of fungal recognition protein, CLSP2 
in A. aegypti (Schuhmann et al., 2003). The antifungal 
defense in A. aegypti is also mediated through JAK-
STAT pathway (Dostalova et al., 2017).

Fungal penetration of the cuticle activates the PPO 
pathway in epidermal cells to synthesize melanin, a 
highly fungitoxic compound which deposits on the fungal 
surface and not only limits the pathogen development by 
melanic sheath encapsulation but also prevents cuticle-
degrading enzyme synthesis (Dong et al., 2012; Wang 
et al., 2015). In Drosophila, transglutaminase anchors 

the fungi to microclots to facilitate the action of AMPs 
and haemocytes in the haemolymph (Binggeli et al., 
2014). The insect transferrin binds to iron and impede 
the pathogen survival. Upon infection with B. bassiana 
and M. anisopliae, transferrin levels are elevated in 
Mastotermes darwiniensis and G. mellonella (Geiser 
et al., 2012; Sowa-Jasilek et al., 2014). Insects can 
counter fungal infection employing microRNAs to 
silence virulence-related genes. Mosquitoes enhance the 
expression of let-7 and miR-100 miRNAs for specific 
silencing of the virulent fungal genes, sec2p and C6TF 
(Dubovskiy et al., 2013).

e. Fungal evasion strategies
To up the ante in the arms race, fungi exhibit various 

invasive strategies to counteract the immune responses 
and successfully colonize the insect haemocoel. Fungal 
cells belonging to the genus Metarhizium upregulate 
MOS1 osmosensor to adapt to the osmotic pressure 
of the insect haemolymph (Thompson et al., 2003). 
Cell wall remodelling coupled with cell surface 
camouflaging enables the fungi to escape haemocyte 
encapsulation. In the host haemolymph, B. bassiana 
demonstrate carbohydrate epitope shielding to immune 
recognition and propagate as single yeast-like cells 
with thin cell walls known as blastopores (Wang et al., 
2008; Wang et al., 2021c). These shifts to blastospores 
minimize the number of PAMPs on the cell surface to 
reduce host PRR recognition in G. mellonella (Wanchoo 
et al., 2009). Metarhizium sp. blastospores evade 
haemocytes by secreting a hydrophilic collagen (Mcl-1) 
coat to mask antigenic beta-glucans of the fungal cell 
wall (Hou et al., 1985). A non-hydrophobic cell wall 
protein (CWP-10) and a conidial protein (CP-15) of B. 
bassiana are also involved in the escape mechanism and 
insect virulence (Vertyporokh et al., 2020). 

Certain fungi use yeast-type budding strategy to 
rapidly proliferate as hyphal bodies in the haemocoel. 
The quick propagation of fungal cells facilitates nutrient 
deprivation to expedite the insect death (Wang et al., 
2006a). For instance, acid trehalase (Brivio et al., 
2020) and phosphoketolase genes (Xu et al., 2015) 
in Metarhizium are switched on to degrade the insect 
haemolymph trehalose thereby contributing to the 
fungal virulence. An insect-like sterol carrier protein in 
Metarhizium is involved in the hyphal body formation 
in the haemocoel (Jin et al., 2015). Compared to fungal 
conidia or hyphae, hyphal bodies possess fewer sugar 
epitopes which permit them to avoid recognition 
(Duan et al., 2009). Downregulation or suppression of 
AMPs produced via toll or Imd pathways is yet another 
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evasive mechanism by which entomopathogenic 
fungi evade the host immune responses. Certain 
Metarhizium and Beauveria strains are resistant to the 
antifungal peptide, drosomycin (Zhao et al., 2014). 
In B. bassiana, the dysbiosis of gut microbiota in 
infected mosquitoes downregulated AMPs including 
attacin, cecropin 1, defensin 1, Gambicin 1, and FBN9 
which resulted in accelerated mosquito death (Pendland 
et al., 1993). In a different study, oosporein secreted by B. 
bassiana downregulated the expression of gallerimycin 
in G. mellonella (Tzou et al., 2002). Other immune 
evasive strategies employed by entomopathogenic 
fungi include immune modulation to disrupt the host 
immune responses and repression of proteases involved 
in the activation of PPO cascade. Entomopathogenic 
fungi secrete a variety of virulent factors/toxins during 
invasion, including bassianin, bassiacridin, cyclosporine 
and cyclic destruxins (Chen et al., 2014; Gibson et al., 
2014; Matskevich et al., 2010; Molnar et al., 2010; Wang 
et al., 2012; Wei et al., 2017) which are responsible for 
host specificity, virulence and suppression of immune 
response. Further, destruxins also block phagocytosis 
by inhibiting V-ATPase and thereby alter the pH within 
insect lysosomes and vacuoles (Kissing et al., 2018). 
The Pr1 protease produced during the fungal penetration 
also activates the PPO pathway. Few entomopathogenic 
fungi suppress this protease to diminish the insect PO 
activity (Wang et al., 2021a).

3. Insect-viral interactions
The acquisition of virus by insects is through 

blood feeding, sap sucking or foliage feeding. Plant 
RNA viruses including Caulimovirus, Crinivirus, 
Luteovirus, Geminiviridae, marafiviruses, tospoviruses, 
tenuiviruses, reoviruses, and Rhabdoviruses replicate 
within insect vectors including aphids, thrips, whiteflies, 
leafhoppers and planthoppers. Based on the length of 
the period the vector harbours infectious particles, insect 
transmission of plant viruses can be non-persistent, 
semi-persistent  and persistent. Non-persistent viruses 
are retained in the stylet of the vector for few hours. 
Insects can hold semi-persistent viruses in their 
foregut for few days. Persistent plant viruses initially 
infect gut epithelial cells of Hemiptera insects and 
subsequently invade other tissues and organ systems 
including hemocytes, salivary glands, nervous and 
reproductive systems (Luplertlop et al., 2011). On 
the other hand, most arboviruses that impact human 
health are categorized under three viral families 
including Alphaviridae, Flaviviridae, and Bunyaviridae. 
Drosophila is an ideal model to study arbovirus 
transmission. Natural pathogens of Drosophila include 

Drosophila C virus (DCV), nora virus and sigma virus  
(Kissing et al., 2018; Matskevich et al., 2010).

a. Insect antiviral responses
Antiviral response in the insects is primarily 

mediated by small interfering RNA (siRNA) pathway. 
Viral dsRNA that is synthesized as a result of viral 
RNA genome replication is cleaved by endonuclease, 
Dicer-2 (Dcr-2), and subsequently incorporated into 
the RNA-induced silencing complex (RISC). The 
dsRNA is eventually processed into a single strand 
that binds to the viral RNA genomes and targets them 
for degradation. The antiviral function of siRNA 
pathway has been validated in Drosophila using loss 
of function studies and knockdown experiments of 
RNAi machinery including Dcr-2, Ago-2 or R2D2 
(Galiana-Arnoux et al., 2006; Wang et al., 2006b). 
Similarly, knockdown of the core siRNA pathway 
components resulted in enhanced arbovirus replication 
in Anopheles and Aedes mosquitoes and decreased 
arboviral transmission efficiency (Franz et al., 2006; 
Keene et al., 2004) suggesting the indispensable role 
of siRNA-mediated antiviral defense.

Toll, Imd, JAK-STAT and JNK pathways are 
implicated in antiviral innate immunity in insects. The 
DExD/H helicase domain of insect DCR2 acts as a PRR 
which during viral infection recognize viral nucleic 
acids and viral glycoproteins (PAMPs) (Deddouche et 
al., 2008; Rosendo Machado et al., 2021) to activate 
the immune pathways. Toll pathway is implicated in 
the inhibition of Drosophila X virus (DXV) replication 
in Drosophila. Imd signaling pathway genes, Relish 
(Rel) and the peptidoglycan recognition protein-LC 
(PGRP-LC) displayed antiviral role in the flies infected 
with cricket Paralysis virus (CrPV) (Costa et al., 2009). 
The Drosophila Imd pathway is also implicated in the 
antiviral activity against alphavirus. DENV infection 
in A. aegypti elicits immune components of the Imd 
pathway (Luplertlop et al., 2011). Further, knockdown 
of the midgut Imd components resulted in enhanced 
infection in A. gambiae with O’nyong’nyong virus 
(ONNV) (Carissimo et al., 2015). Activation of JAK-
STAT pathway is attributed to antiviral response against 
DENV, Drosophila C virus, SINV, and West Nile virus 
(WNV) (Dostert et al., 2005; Souza-Neto et al., 2009). 
Knockdown of JAK-STAT component, dome, in 
Drosophila enhanced sigma viral load significantly (Liao 
et al., 2019). Drosophila Dcr-2 triggers the expression of 
Vago, which is a cytokine with interferon-like activity. 
Subsequently, vago binds to an unidentified cellular 
receptor on the adjacent cells to activate the JAK-STAT 
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pathway and induce AMP expression downstream 
(Paradkar et al., 2012). A robust transcriptional activation 
of the JNK pathway components, Hemipterous, Gadd45, 
Jra, Kay, Puckered and Rab-30 was demonstrated in 
Drosophila during DCV infection (Merkling et al., 2015; 
Swevers et al., 2018).

The direct role of AMPs, attacin C and diptericin B, 
in the regulation of viral replication is demonstrated in 
flies (Huang et al., 2013). In Ae. aegypti, knockdown 
of cecropin N, defensin C, defensin D, and lysozyme 
C increased DENV-2 infection (Ramirez et al., 2012; 
Xiao et al., 2014). The insect cellular immunity in 
antiviral defense is mediated by apoptosis or autophagy. 
Viral activation of apoptosis is induced either by pro-
apoptotic genes or inhibitors of apoptosis proteins 
(IAPs). Flock house virus infection in Drosophila 
triggers p53 activation that induces pro-apoptotic gene, 
Reaper to block IAPs activity (Byers et al., 2016; Liu 
et al., 2013). Insect humoral immunity components 
also contribute in antiviral immunity. In, Helicoverpa 
armigera, SP41/cSP1/cSP6 cascade converts PPO into 
active phenoloxidase to block baculovirus infection 
(Wang et al., 2020). The whitefly protein, Tid, 
interacts with the TYLCV coat protein. Inhibition of 
Tid enhanced TYLCV replication (Zhao et al., 2020). 
In insects, Wolbachia offers protection against RNA 
viruses. The protection is density-dependent which 
varies among strains. Flies infected with Wolbachia are 
less sensitive against infection by the DCV, FHV and 
Nora virus (Teixeira et al., 2008). Wolbachia also blocks 
DENV replication in mosquitoes (Pimentel et al., 2020). 
Further, Wolbachia stimulates the ROS production 
which provides antiviral protection mediated by ERK 
signalling pathway (Wong et al., 2016).

b. Viral evasion mechanisms
Counter viral mechanisms for insect survival are 

primarily through RNA interference (RNAi) and 
IAPs. Certain viruses produce proteins known as virus 
suppressor of RNAi (VSRs) to evade the RNAi-mediated 
cleavage. VSRs, B2 and 1A produced by members of 
the Nodaviridae and Dicistroviridae respectively are 
well characterized (Ding et al., 2011). VSRs including 
IIV6-340R, DCV-1A, VP3 and FHV-B2 that are 
characterized from Drosophila X virus (DXV) and 
Culex Y virus (CYV) directly bind to long dsRNA and 
thereby block Dcr-2 processing (Fareh et al., 2018; 
van Cleef et al., 2014). Nora virus VSRs, CrPV-1A 
and VP1, bind to AGO-2 and inhibit slicing of the 
target (Schuster et al., 2019). NS4B protein isolated 
from dengue virus 2 (DENV-2) inhibits the siRNA 

pathway in mosquito cells (Elrefaey et al., 2021). Some 
viruses encode specific factors to counter the immune 
responses in the insect gut. The flavivirus nonstructural 
protein-1 (NS-1) facilitates infection of DENV and 
ZIKV in mosquito gut epithelial cells by suppressing 
the enzymes involved in ROS synthesis and JAK-STAT 
pathway (Liu et al., 2016; Liu et al., 2017). Virus-
induced Drosophila protein, Diedel, acts as an inhibitor 
of the IMD pathway for successful establishment of 
SINV infection (Lamiable et al., 2016).

Few insect viruses employ specific components 
to breach the peritrophic matrix and thereby establish 
virus infection in the midgut. Enhancin produced 
by baculoviruses is one such component with viral-
enhancing activity. Trichoplusia ni granulovirus 
(TnGV) enhancin established NPV infectivity (Wang 
et al., 1994) by specifically degrading intestinal mucin 
proteins from the T. ni peritrophic matrix (Bischoff et 
al., 1997). Bacterium Serratia marcescens secretes ‘Sm 
enhancin’ that digests membrane-bound mucins and 
facilitates DENV infection (Wu et al., 2019). Peritrophic 
matrix in silkworm larvae is disrupted by fusolin secreted 
by entomopoxvirus spheroids of Anomala cuprea 
(Mitsuhashi et al., 2003). Baculovirus-infected insect 
cells inhibit translation by activating PK2, a homolog 
of eIF2α kinase which prevents eIF2α phosphorylation 
by competitive inhibition  (Li et al., 2015). Lysine 
deacetylation of heat shock cognate protein, HSC70-
4 accelerates Bombyx mori nucleopolyhedrovirus 
proliferation through proteasome-mediated nuclear 
import system (Mao et al., 2021). In silkworms infected 
with Cypovirus, increased levels of BmCPV-miR-1 and 
BmCPV-miR-3 inhibited host gene BmRan thereby 
promoting viral proliferation (Lin et al., 2021). Tomato 
yellow leaf curl virus (TYLCV) replicates efficiently 
in the whitefly vector via induction and recruitment of 
proliferating cell nuclear antigen (PCNA) (He et al., 
2020; Marques et al., 2016). 

4. Insect-microbe-plant tripartite interactions and 
pest management

Insect-associated microbes play an important role 
in determining insect-plant interactions. Insect-microbe 
interactions can be either beneficial to the plant or could 
help the insect to infest the plants as a monophagous 
or polyphagous pest. Piercing and sucking insects that 
belongs to the order Hemiptera transmit endophytes that 
promote plant growth and benefit the insect host with 
nutrition. Insect transmitted Rhizobacterium, Klebsiella 
oxytoca, induces jasmonic acid and ethylene defenses 
in the plant species against necrotrophic pathogens 
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and insects (Coolen et al., 2022). For eg., the root 
associated Rhizobium sp. induces systemic response in 
the plant that allows rapid and effective defense against 
Pectobacterium, a gut inhabitant of the larvae of cabbage 
root fly Delia radicum (van den Bosch et al., 2020). Few 
bacilli such as Klebsiella and Enterobacter sp. can 
directly produce sex pheromones using glucose and 
threonine as the substrates in the male Oriental fruit 
fly, Bactrocera dorsalis. These pheromones influence 
the mating behaviour of fruit fly which is a major pest 
of fruit bearing plants (Zhao et al., 2022).

Plant volatiles and phytochemicals act as chemical 
defenses against the herbivorous insects. In response, 
herbivorous insects with the help of their associated 
microbiota metabolize these detrimental substances 
and detoxify the phytochemicals. Oral secretions of 
Leptinotarsa decemlineata harbour bacteria including 
Pseudomonas and Enterobacter sp. repressed plant 
jasmonic acid mediated defenses. Whitefly Bemisia 
tabaci with its gut symbiont Hamiltonella induced 
salicylic acid responses while repressing the jasmonic 
acid defenses. Staphylococcus epidermidis in the saliva 
secretions of Spodoptera litura and Pseudomonas 
syringae in the cabbage looper moth Trichoplusia ni 
benefits from salicylic acid-jasmonic acid antagonism 
(Caarls et al., 2015). The generalist or specialist nature 
of insect pests is now known to be determined by 
their microbial composition. For eg., Trichoplusia ni 
gut was dominated by Propionibacterium, Shinella, 
Terribacillus that degraded plant glucosinolates when 
fed upon Arabidopsis thaliana leaves. On the other 
hand, the abundance of Agrobacterium and Rhizobium 
sp. prominently increases when fed on Solanum 
lycopersicum leaves which enabled degradation 
of alkaloids (Zhao et al., 2022). Similarly, a bean 
diet rich in cyanogenic glycosides caused mortality 
in Spodoptera littoralis insect larvae, however when the 
larvae were fed with barley-rich diet, the gut microbiota 
was revived (Mason et al., 2020).

In the agricultural or residential set up, insect pests 
are exposed to repellents or agrochemicals.  Insect 
residing microbiota has developed the capabilities to 
detoxify these chemicals and subsequently generate 
insect resistance. In the urban pest Aedes albopictus 
that causes dengue and chikungunya, higher abundance 
of Serratia oryzae and Acinetobacter junii were 
observed in deltamethrin-resistant strains compared 
to the sensitive strains (Wang et al., 2021b). The 
insect gut symbionts of bean bug, Cletus punctiger 
and Riptortus pedestris were able to detoxify the 

agrochemical fenitrothion and confer resistance to the 
insect host (Zhao et al., 2022). In cockroach Blatta 
orientalis, higher degradation rate of α-endosulfan was 
mediated by the gut bacteria Pseudomonas aeruginosa 
and Acinetobacter lwoffii which make these household 
pests difficult to control (Ozdal et al., 2016). The gut 
microbiota of the pollinator such as the honey bee 
Apis mellifera, upregulated the gene expression of 
detoxifying-related genes, CYP450s, GST, and catalase, 
and thus exhibited enhanced tolerance to thiacloprid or 
flumethrin (Wu et al., 2020).

Changing agriculture landscape and climate is 
reshaping the insect biodiversity worldwide. Rapid 
decline in many insect species that are beneficial to 
ecosystem is reported. The insect lifecycles and their 
patterns are affected such that many non-vector insects 
are gaining vector competence. Non-pest insects are 
transforming into agricultural pests and pest resistance 
to agrochemicals is often reported. Under this scenario, 
understanding natural adaptive mechanisms of plants, 
insects and their associated microbes is important to 
provide sustainable alternatives without negatively 
impacting the ecological footprint. Effective pest and 
plant disease management strategies require application 
of knowledge of multitrophic interactions between 
plants, insects and microbes. Further, since insects rely 
on their microbial services, insect-associated microbes 
would serve as ideal targets for pest control.
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